Encyclopedia > Talk:Lagrange inversion theorem

  Article Content

Talk:Lagrange inversion theorem

What about this:

<math>
  \left.
  g(z) = a
  + \sum_{n=1}^{\infty}
  \frac{d^{n-1}}{(dw)^{n-1}}
  \left( \frac{(w-a)^n}{(f(w) - b)^n} \right)
  \right|
  _{w = a}
  {\frac{(z - b)^n}{n!}}
</math>

                 ∞    dn-1  /  (w - a)n    \ |      (z - b)n 
    g(z) = a  +  ∑  ------ | -----------  | |      --------                      
                n=1 (dw)n-1 \ (f(w) - b)n  / |         n!
                                            | w=a

--Edmund 02:23 Feb 22, 2003 (UTC)

Yup, the TeX is correct now. AxelBoldt 20:45 Mar 2, 2003 (UTC)



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Dennis Gabor

... Gabor - Wikipedia <<Up     Contents Dennis Gabor Dennis Gabor (Gábor Dénes) (1900-1979) was a Hungarian physicist. He invented holography in ...

 
 
 
This page was created in 31.3 ms