Encyclopedia > Talk:Identical particles

  Article Content

Talk:Identical particles

This has profound implications for thermodynamics. Suppose you have two coins which are not identical. The probability of finding the coins in heads-tails is one in two, while the probability of finding the coints in heads-heads or tails-tails in one in four. If the coins are identical, then the probability of finding the coins in heads-heads, tails-tails, or heads-tails is one in three. Since the thermodynamic properties of a material are determined by the probability of particles being at a certain energy, the assertion of identical particles has some very noticable impacts.

I removed this paragraph, as I have doubts about it. Could whoever wrote it please explain in greater detail? I do not find it useful, because coins (like all macroscopic objects) are not identical. Also, I do not understand what you mean by "flipping" identical coins.


Rewrote the paragraph. I'm basically trying to paraphrase the discussion of quantum statistics in Kittel and Kromer's *Thermal Physics*. The basic point is that the concept of identical particles has some profound macroscopic consequences. The discussion is for bosons. It would be nice to include a section of the implications of antisymmetry on fermions.
The Pauli exclusion principle doesn't always work, according to my quantum textbook. See my discussion in talk:Pauli exclusion principle. -- Tim Starling



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
East Farmingdale, New York

... population density is 387.5/km² (1,003.8/mi²). There are 1,723 housing units at an average density of 123.7/km² (320.3/mi²). The racial makeup of ...

 
 
 
This page was created in 22.3 ms