Encyclopedia > Talk:Haar measure

  Article Content

Talk:Haar measure

The article says:
It turns out that there is, up to a multiplicative constant, only one translation invariant measure on X which is finite on all compact sets.
This can't be quite right. On R, for example, Borel measure and Lebesgue measure both have this property. Perhaps it's correct if "measure" is replaced with "complete measure". --Zundark, 2002 Mar 6


You're mistaken. "X" was defined as the sigma algebra generated by the compact sets. Lebesgue measure has a more extensive domain than that; Borel measure does not.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Canadian Charter of Rights and Freedoms

... legislatures in Canada when it was adopted by the British Parliament in 1982 (though as part of the Canada Act (UK) 1982 it only became law in Canada, not the United ...

 
 
 
This page was created in 41.8 ms