## Encyclopedia > Table of derivatives

Article Content

# Table of derivatives

The primary operation in differential calculus is finding a derivative. This table lists derivatives of many functions. In the following, f and g are functions of x, and c is a constant with respect to x. The set of real numbers is assumed. These formulas are sufficient to differentiate any elementary function.

### Rules for differentiation of general functions

${d \over dx} cf(x) = c{d \over dx} f(x)$

${d \over dx} (f(x) + g(x)) = {d \over dx} f(x) + {d \over dx} g(x)$

${d \over dx} f(x)g(x) = {d \over dx}f(x) \cdot g(x) + f(x) \cdot {d \over dx}g(x)$

${d \over dx} {f(x) \over g(x)} = {{d \over dx} f(x) \cdot g(x) - f(x) \cdot {d \over dx} g(x) \over (g(x))^2}$

${d \over dx} f(x)^{g(x)} = f(x)^{g(x)}\left({d \over dx}f(x) \cdot {g(x) \over f(x)} + {d \over dx}g(x) \cdot \ln f(x)\right),\qquad f(x) > 0$

${d \over dx} f(g(x)) = {d \over dg} f(g(x)) {d \over dx} g(x)$

### Derivatives of Simple and Polynomial Functions

${d \over dx} c = 0$

${d \over dx} x = 1$

${d \over dx} |x| = {x \over |x|},\qquad x \ne 0$

${d \over dx} x^c = cx^{c-1}$

### Derivatives of Exponential and Logarithmic Functions

${d \over dx} c^x = {c^x \ln c},\qquad c > 0$

${d \over dx} e^x = e^x$

${d \over dx} \log_c x = {1 \over x \ln c},\qquad c > 0$

${d \over dx} \log_c |x| = {1 \over x \ln c},\qquad c > 0$

${d \over dx} \ln x = {1 \over x}$

${d \over dx} \ln |x| = {1 \over x}$

### Derivatives of Trigonometric Functions

${d \over dx} \sin x = \cos x$

${d \over dx} \cos x = -\sin x$

${d \over dx} \tan x = \sec^2 x$

${d \over dx} \sec x = \tan x \sec x$

${d \over dx} \cot x = -\csc^2 x$

${d \over dx} \csc x = -\cot x \csc x$

${d \over dx} \sin^{-1} x = { 1 \over \sqrt{1 - x^2}}$

${d \over dx} \cos^{-1} x = {-1 \over \sqrt{1 - x^2}}$

${d \over dx} \tan^{-1} x = { 1 \over 1 + x^2}$

${d \over dx} \sec^{-1} x = { 1 \over |x|\sqrt{x^2 - 1}}$

${d \over dx} \cot^{-1} x = {-1 \over 1 + x^2}$

${d \over dx} \csc^{-1} x = {-1 \over |x|\sqrt{x^2 - 1}}$

### Derivatives of Hyperbolic Functions

${d \over dx} \sinh x = \cosh x$

${d \over dx} \cosh x = \sinh x$

${d \over dx} \tanh x = \mbox{sech}^2\,x$

${d \over dx} \,\mbox{sech}\,x = -\tanh x\,\mbox{sech}\,x$

${d \over dx} \,\mbox{coth}\,x = -\,\mbox{csch}^2\,x$

${d \over dx} \,\mbox{csch}\,x = -\,\mbox{coth}\,x\,\mbox{csch}\,x$

${d \over dx} \sinh^{-1} x = { 1 \over \sqrt{x^2 + 1}}$

${d \over dx} \cosh^{-1} x = {-1 \over \sqrt{x^2 - 1}}$

${d \over dx} \tanh^{-1} x = { 1 \over 1 - x^2}$

${d \over dx} \mbox{sech}^{-1}\,x = { 1 \over x\sqrt{1 - x^2}}$

${d \over dx} \mbox{coth}^{-1}\,x = {-1 \over 1 - x^2}$

${d \over dx} \mbox{csch}^{-1}\,x = {-1 \over |x|\sqrt{1 + x^2}}$

All Wikipedia text is available under the terms of the GNU Free Documentation License

Search Encyclopedia
 Search over one million articles, find something about almost anything!

Featured Article
 Battle Creek, Michigan ... There is also Battle Creek, Nebraska. Battle Creek is a city in Michigan. It is the county seat of Calhoun County. It is the world headquarters of Kellogg Company[?] ...