The primary operation in
differential calculus is finding a
derivative. This table lists derivatives of many functions. In the following,
f and
g are functions of
x, and
c is a constant with respect to
x. The set of
real numbers is assumed. These formulas are sufficient to differentiate any
elementary function.
- <math>{d \over dx} cf(x) = c{d \over dx} f(x)</math>
- <math>{d \over dx} (f(x) + g(x)) = {d \over dx} f(x) + {d \over dx} g(x)</math>
- <math>{d \over dx} f(x)g(x) = {d \over dx}f(x) \cdot g(x) + f(x) \cdot {d \over dx}g(x)</math>
- <math>{d \over dx} {f(x) \over g(x)} = {{d \over dx} f(x) \cdot g(x) - f(x) \cdot {d \over dx} g(x) \over (g(x))^2}</math>
- <math>{d \over dx} f(x)^{g(x)} = f(x)^{g(x)}\left({d \over dx}f(x) \cdot {g(x) \over f(x)} + {d \over dx}g(x) \cdot \ln f(x)\right),\qquad f(x) > 0</math>
- <math>{d \over dx} f(g(x)) = {d \over dg} f(g(x)) {d \over dx} g(x)</math>
- <math>{d \over dx} c = 0</math>
- <math>{d \over dx} x = 1</math>
- <math>{d \over dx} |x| = {x \over |x|},\qquad x \ne 0</math>
- <math>{d \over dx} x^c = cx^{c-1}</math>
- <math>{d \over dx} c^x = {c^x \ln c},\qquad c > 0</math>
- <math>{d \over dx} e^x = e^x</math>
- <math>{d \over dx} \log_c x = {1 \over x \ln c},\qquad c > 0</math>
- <math>{d \over dx} \log_c |x| = {1 \over x \ln c},\qquad c > 0</math>
- <math>{d \over dx} \ln x = {1 \over x}</math>
- <math>{d \over dx} \ln |x| = {1 \over x}</math>
- <math>{d \over dx} \sin x = \cos x</math>
- <math>{d \over dx} \cos x = -\sin x</math>
- <math>{d \over dx} \tan x = \sec^2 x</math>
- <math>{d \over dx} \sec x = \tan x \sec x</math>
- <math>{d \over dx} \cot x = -\csc^2 x</math>
- <math>{d \over dx} \csc x = -\cot x \csc x</math>
- <math>{d \over dx} \sin^{-1} x = { 1 \over \sqrt{1 - x^2}}</math>
- <math>{d \over dx} \cos^{-1} x = {-1 \over \sqrt{1 - x^2}}</math>
- <math>{d \over dx} \tan^{-1} x = { 1 \over 1 + x^2}</math>
- <math>{d \over dx} \sec^{-1} x = { 1 \over |x|\sqrt{x^2 - 1}}</math>
- <math>{d \over dx} \cot^{-1} x = {-1 \over 1 + x^2}</math>
- <math>{d \over dx} \csc^{-1} x = {-1 \over |x|\sqrt{x^2 - 1}}</math>
- <math>{d \over dx} \sinh x = \cosh x</math>
- <math>{d \over dx} \cosh x = \sinh x</math>
- <math>{d \over dx} \tanh x = \mbox{sech}^2\,x</math>
- <math>{d \over dx} \,\mbox{sech}\,x = -\tanh x\,\mbox{sech}\,x</math>
- <math>{d \over dx} \,\mbox{coth}\,x = -\,\mbox{csch}^2\,x</math>
- <math>{d \over dx} \,\mbox{csch}\,x = -\,\mbox{coth}\,x\,\mbox{csch}\,x</math>
- <math>{d \over dx} \sinh^{-1} x = { 1 \over \sqrt{x^2 + 1}}</math>
- <math>{d \over dx} \cosh^{-1} x = {-1 \over \sqrt{x^2 - 1}}</math>
- <math>{d \over dx} \tanh^{-1} x = { 1 \over 1 - x^2}</math>
- <math>{d \over dx} \mbox{sech}^{-1}\,x = { 1 \over x\sqrt{1 - x^2}}</math>
- <math>{d \over dx} \mbox{coth}^{-1}\,x = {-1 \over 1 - x^2}</math>
- <math>{d \over dx} \mbox{csch}^{-1}\,x = {-1 \over |x|\sqrt{1 + x^2}}</math>
All Wikipedia text
is available under the
terms of the GNU Free Documentation License