Encyclopedia > Table of derivatives

  Article Content

Table of derivatives

The primary operation in differential calculus is finding a derivative. This table lists derivatives of many functions. In the following, f and g are functions of x, and c is a constant with respect to x. The set of real numbers is assumed. These formulas are sufficient to differentiate any elementary function.

Table of contents

Rules for differentiation of general functions

<math>{d \over dx} cf(x) = c{d \over dx} f(x)</math>

<math>{d \over dx} (f(x) + g(x)) = {d \over dx} f(x) + {d \over dx} g(x)</math>

<math>{d \over dx} f(x)g(x) = {d \over dx}f(x) \cdot g(x) + f(x) \cdot {d \over dx}g(x)</math>

<math>{d \over dx} {f(x) \over g(x)} = {{d \over dx} f(x) \cdot g(x) - f(x) \cdot {d \over dx} g(x) \over (g(x))^2}</math>

<math>{d \over dx} f(x)^{g(x)} = f(x)^{g(x)}\left({d \over dx}f(x) \cdot {g(x) \over f(x)} + {d \over dx}g(x) \cdot \ln f(x)\right),\qquad f(x) > 0</math>

<math>{d \over dx} f(g(x)) = {d \over dg} f(g(x)) {d \over dx} g(x)</math>

Derivatives of Simple and Polynomial Functions

<math>{d \over dx} c = 0</math>

<math>{d \over dx} x = 1</math>

<math>{d \over dx} |x| = {x \over |x|},\qquad x \ne 0</math>

<math>{d \over dx} x^c = cx^{c-1}</math>

Derivatives of Exponential and Logarithmic Functions

<math>{d \over dx} c^x = {c^x \ln c},\qquad c > 0</math>

<math>{d \over dx} e^x = e^x</math>

<math>{d \over dx} \log_c x = {1 \over x \ln c},\qquad c > 0</math>

<math>{d \over dx} \log_c |x| = {1 \over x \ln c},\qquad c > 0</math>

<math>{d \over dx} \ln x = {1 \over x}</math>

<math>{d \over dx} \ln |x| = {1 \over x}</math>

Derivatives of Trigonometric Functions

<math>{d \over dx} \sin x = \cos x</math>

<math>{d \over dx} \cos x = -\sin x</math>

<math>{d \over dx} \tan x = \sec^2 x</math>

<math>{d \over dx} \sec x = \tan x \sec x</math>

<math>{d \over dx} \cot x = -\csc^2 x</math>

<math>{d \over dx} \csc x = -\cot x \csc x</math>

<math>{d \over dx} \sin^{-1} x = { 1 \over \sqrt{1 - x^2}}</math>

<math>{d \over dx} \cos^{-1} x = {-1 \over \sqrt{1 - x^2}}</math>

<math>{d \over dx} \tan^{-1} x = { 1 \over 1 + x^2}</math>

<math>{d \over dx} \sec^{-1} x = { 1 \over |x|\sqrt{x^2 - 1}}</math>

<math>{d \over dx} \cot^{-1} x = {-1 \over 1 + x^2}</math>

<math>{d \over dx} \csc^{-1} x = {-1 \over |x|\sqrt{x^2 - 1}}</math>

Derivatives of Hyperbolic Functions

<math>{d \over dx} \sinh x = \cosh x</math>

<math>{d \over dx} \cosh x = \sinh x</math>

<math>{d \over dx} \tanh x = \mbox{sech}^2\,x</math>

<math>{d \over dx} \,\mbox{sech}\,x = -\tanh x\,\mbox{sech}\,x</math>

<math>{d \over dx} \,\mbox{coth}\,x = -\,\mbox{csch}^2\,x</math>

<math>{d \over dx} \,\mbox{csch}\,x = -\,\mbox{coth}\,x\,\mbox{csch}\,x</math>

<math>{d \over dx} \sinh^{-1} x = { 1 \over \sqrt{x^2 + 1}}</math>

<math>{d \over dx} \cosh^{-1} x = {-1 \over \sqrt{x^2 - 1}}</math>

<math>{d \over dx} \tanh^{-1} x = { 1 \over 1 - x^2}</math>

<math>{d \over dx} \mbox{sech}^{-1}\,x = { 1 \over x\sqrt{1 - x^2}}</math>

<math>{d \over dx} \mbox{coth}^{-1}\,x = {-1 \over 1 - x^2}</math>

<math>{d \over dx} \mbox{csch}^{-1}\,x = {-1 \over |x|\sqrt{1 + x^2}}</math>



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Digital Rights Management

... holders to be unacceptable. See Professor Edward Felten's freedom-to-tinker Web site for information and pointers. An early example of a DRM system is the Content ...

 
 
 
This page was created in 24 ms