Encyclopedia > Symmetric matrix

  Article Content

Symmetric matrix

In linear algebra, a symmetric matrix is a matrix that is its own transpose. Thus A is symmetric if:

<math>A^T = A</math>

which implies that A is a square matrix. Intuitively, the entries of a symmetric matrix are symmetric with respect to the main diagonal (top left to bottom right). Example:

<math>\begin{bmatrix}
1 & 2 & 3\\ 2 & 0 & 5\\ 3 & 5 & 6\end{bmatrix}</math>

Any diagonal matrix is symmetric, since all its off-diagonal entries are zero.

One of the basic theorems concerning such matrices is the finite-dimensional spectral theorem, which says that any symmetric matrix whose entries are real can be diagonalized by an orthogonal matrix.

See also skew-symmetric matrix.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
East Farmingdale, New York

... The racial makeup of the town is 73.33% White, 14.83% African American, 0.15% Native American, 4.09% Asian, 0.09% Pacific Islander, 4.52% from other races, ...

 
 
 
This page was created in 35 ms