Encyclopedia > Superficial anatomy

  Article Content

Superficial anatomy

The objects of the study of superficial anatomy are to show, first, the form and proportions of the human body and, second, the surface landmarks which correspond to deeper structures hidden from view. This study blends imperceptibly with others, such as physical anthropology, which deals chiefly with variations. The pseudosciences of physiognomy, phrenology and palmistry rely heavily on superficial anatomy.

With regard to the proportions of the body the artist and anatomist approach the subject from a slightly different point of view. The former, by a process of artistic selection, seeks the ideal and adopts the proportions which give the most pleasing effect, while the latter desires to know only the mean of a large series of measurements.

The scheme which Dr Paul Richer[?] suggests (Anatomie artistique, Paris, 1890), and Professor Arthur Thomson[?] approves (Anatomy for Art Students, 1896), is to divide the whole body into head-lengths, of which seven and a half make up the stature. Four of these are above the fork and three and a half below. Of the four above, one forms the head and face, the second reaches from the chin to the level of the nipples, the third from the nipples to the navel, and the fourth from there to the fork. By dividing these into half-heads other points can be determined; for instance the middle of the first head-length corresponds to the eyes, the middle of the second to the shoulder, of the fourth to the top of the hip-joint, and of the fifth to the knee-joint.

The elbow-joint, when the arms are by the side, is a little above the lower limit of the third head-length, whilst the wrist is opposite the very centre of the stature, three head-lengths and three-quarters from the crown or the soles. The tips of the fingers reach a little below the middle of the fifth head-length. By making the stature eight head-lengths instead of seven and a half the artistic effect is increased, as it is also by slightly lengthening the legs in proportion to the body. Approximate average breadth measurements are two heads for the greatest width of the shoulders, one and a half for the greatest width of the hips, one for the narrowest part of the waist, and three-quarters for the breadth of the head on a level with the eyes.

The relation of superficial landmarks to deep structures cannot be treated here in full detail, but the chief points may be indicated. Certain parts of the head may easily be felt through the skin. If the finger is run along the upper margin of the orbit, the notch for the supraorbital nerve may usually be felt at the junction of the inner and middle thirds. At the outer end of the margin is its junction with the malar bone, and this easily felt point is known as the external angular process. The junction of the frontal and nasal bones at the root of the nose is the nasion, while at the back of the skull the external occipital protuberance or inion is felt and marks the position of the torcular Herophili, where the venous sinuses meet. The zygoma may be felt running back from the malar bone to just in front of the ear, and two fingers' breadth above the middle of it marks the pterion, a very important point in the localization of intracranial structures. It corresponds to the anterior branch of the middle meningeal artery, to the Sylvian point where the three limbs of the fissure of Sylvius diverge, to the middle cerebral artery, the central lobe of the brain or island of Reil, and the anterior part of the corpus striatum. The fissure of Sylvius can be marked out by drawing a line from the external angular process back through the Sylvian point to the lower part of the parietal eminence.

The position of the sulcus of Rolando is important because of the numerous cortical centres which lie close to it. For practical purposes it may be mapped out by taking the superior Rolandic point, half an inch behind the bisection of a line drawn from the nasion to the inion over the vault of the skull, and joining that to the inferior Rolandic point, which is just above the line of the fissure of Sylvius and one inch behind the Sylvian point. The external parieto-occipital fissure, which forms the boundary between the parietal and occipital lobes of the brain, is situated practically at the lambda, which is a hand's breadth (2 3/4 inches) above the inion. The lateral sinus can be mapped out by joining the inion to the asterion, a point two-thirds of the distance from the lambda to the tip of the mastoid process; thence the sinus curves downward and forward toward the tip of the mastoid process. A point one inch horizontally backward from the top of the external auditory meatus will always strike it.

Cranio-cerebral topography has been dealt with by Broca, Bischoff, Turner, Fere, Pozzi, Giacomini, Ecker, Hefftler and Hare. Among the late-19th-century papers are those of R. W. Reid (Lancet, 27th September 1884), W. Anderson and G. Makins (Lancet, 13th July 1889), Prof. Chiene (detailed in Cunningham's Text-Book of Anatomy), V. Horsley (Am. Journal Med. Sci., 1887), G. Thane and R. Godlee (Quain's Anatomy--appendix to 10th edition). D. J. Cunningham discusses the whole question in his "Contribution to the Surface Anatomy of the Cerebral Hemispheres" (Cunningham Memoirs, No. vii. R. Irish Academy, Dublin, 1892), and he has prepared a series of casts to illustrate it.


from an old encyclopedia



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Dennis Gabor

...     Contents Dennis Gabor Dennis Gabor (Gábor Dénes) (1900-1979) was a Hungarian physicist. He invented holography in 1947, for ...

 
 
 
This page was created in 23.4 ms