Encyclopedia > Simpson's rule

  Article Content

Simpson's rule

In computer science, in the field of numerical analysis, Simpson's Rule is a way to get an approximation of an integral:

<math> \int_{a}^{b} f(x) dx</math>

using an interpolating polynomial of higher degree. Simpson's rule belong to the family of rules derived from Newton-Cotes formulas. The most common is a quadratic polynomial interpolating at a, (a+b)/2, and b which gives us the polynomial:

<math> P(x) = f(a) + (x-a)f\left[a,\left( \frac{a+b}{2} \right)\right] + \left(x-\left( \frac{a+b}{2} \right)\right)(x-a)f\left[a,\left( \frac{a+b}{2} \right), b\right] </math>

From this Simpson's Rule is:

<math> \int_{a}^{b} f(x) dx \approx S(f) = \frac{b-a}{6}\left[f(a) + 4f\left(\frac{a+b}{2}\right)+f(b)\right]
</math>

Proof

We want to have our polynomial on the form:

<math>P(x) = \alpha x^2 + \beta x + \gamma</math>

Assume we have the function values <math>a=x_0</math>, <math>\frac{a+b}{2}=x_1</math> and <math>b=x_2</math>. The situation will look like this, with our sampled function values at <math>f(a)</math>, <math>f\left(\frac{a+b}{2}\right)</math> and <math>f(b)</math>:

As this Simpson's rule apply to equidistant points, we know that <math>x_0 < x_1 < x_2</math> and that <math>x_1-x_0 = x_2-x_1</math>. This means we may transport our solution to the intervals formed by <math>-h, 0, h</math> such that

<math>h \equiv \frac{a+b}{2}</math>

We need to interpolate these values and function values with a polynomial and form our equations:

<math>f(-h) = \alpha h^2 - \beta h + \gamma</math>
<math>f(0) = \gamma</math>
<math>f(h) = \alpha h^2 + \beta h + \gamma</math>

Which yields:

<math>\alpha = \frac{f(-h) - 2f(0) + f(h)}{2h^2}</math>
<math>\beta = \frac{f(h) - f(-h)}{2h}</math>
<math>\gamma = f(0)</math>

We then integrate our polynomial:

<math>\int_{-h}^h P(x) dx =</math>
<math>\int_{-h}^h \frac{f(-h) - 2f(0) + f(h)}{2h^2}x^2 +
\frac{f(h) - f(-h)}{2h}x + f(0) dx =</math>
<math>\left[\frac{f(-h) - 2f(0) + f(h)}{6h^2}x^3 +
\frac{f(h) - f(-h)}{4h}x^2 + f(0)x \right]_{-h}^h =</math>
<math>\frac{f(-h) - 2f(0) + f(h)}{6h^2}h^3 +
\frac{f(h) - f(-h)}{4h}h^2 + f(0)h +</math>
<math>\frac{f(-h) - 2f(0) + f(h)}{6h^2}h^3 -
\frac{f(h) - f(-h)}{4h}h^2 + f(0)h =</math>
<math>\frac{f(-h) - 2f(0) + f(h)}{3h^2}h^3 +
2f(0)h</math>

Substitute back our original values:

<math>\frac{f(a) - 2f\left(\frac{a+b}{2}\right) + f(b)}{3\left(\frac{b-a}{2}\right)^2}\left(\frac{b-a}{2}\right)^3 +
2f\left(\frac{a+b}{2}\right) \left(\frac{b-a}{2}\right) =</math>
<math>\frac{f(a) - 2f\left(\frac{a+b}{2}\right) + f(b)}{3}\left(\frac{b-a}{2}\right) +
2f\left(\frac{a+b}{2}\right) \left(\frac{b-a}{2}\right) = </math>
<math>\frac{b-a}{6} \left(f(a) - 2f\left(\frac{a+b}{2}\right) + f(b) +
6f\left(\frac{a+b}{2}\right) \right) = </math>
<math>\frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)</math>

Q.E.D.

Error of Simpson's Rule

To examine the accuracy of the rule, take <math>c = \frac{a+b}{2}</math>, so

<math> \int_{a}^{b} f(x) dx = \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx</math>

Using integration by parts we get:

<math> \int_{a}^{c} f(x) dx = f(x)(x-\alpha)|^c_a - \int_{a}^{c} f'(x)(x-\alpha) dx </math>
and
<math>\int_{c}^{b} f(x) dx = f(x)(x-\beta)|^b_c - \int_{c}^{b} f'(x)(x-\beta) dx</math>

where α and β are constants that we can choose. Adding these expressions, we get:

<math> \int_{a}^{b} f(x) dx = f(b)(b-\beta)+f(c)(\beta-\alpha)+f(a)(\alpha-a) - \int_{a}^{c} f'(x)(x-\alpha) dx - \int_{c}^{b} f'(x)(x-\beta) dx</math>

Let's take α and β, so as to get Simpson's Rule:

<math>\alpha = \frac{b+5a}{6}, \beta = \frac{5b+a}{6}</math>

and defining the function Py(x) by:

<math>P_y(x)=\left\{\begin{matrix} x-\alpha, & \mbox{if }a\le x \le c \\ x-\beta, & \mbox{if }c < x \le b \end{matrix}\right.</math>

we have

<math> \int_{a}^{b} f(x) dx = S(f) - \int_{a}^{b}f'(x)P_y(x)dx</math>

where

<math>\int_{a}^{b}f'(x)P_y(x)dx</math>
is the error value.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Great River, New York

... are 97.8 males. The median income for a household in the town is $78,399, and the median income for a family is $89,566. Males have a median income of $60,179 versus ...

 
 
 
This page was created in 38.4 ms