Encyclopedia > Simple group

  Article Content

Simple group

A simple group is a mathematical group G which has more than one element and does not have any normal subgroups besides {e} (e being the identity element of G) and G itself.

Despite the name, simple groups are far from "simple". The finite simple groups are important because in a certain sense they are the "basic building blocks" of all finite groups, somewhat similar to the way prime numbers are the basic building blocks of the integers. This is expressed by the Jordan-Hölder theorem[?].

The only simple groups which are abelian are the cyclic groups whose order is a prime number. In a huge collaborative effort, the classification of finite simple groups was accomplished in 1982.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
East Islip, New York

... race. There are 4,578 households out of which 42.9% have children under the age of 18 living with them, 68.0% are married couples living together, 10.0% have a femal ...

 
 
 
This page was created in 46.7 ms