Encyclopedia > Removable singularity

  Article Content

Removable singularity

In complex analysis, a removable singularity of a function is a point at which the function is not defined (i.e. a singularity) but at which the function can be defined without creating any problems.

For instance, the function f(z) = sin(z)/z for z ≠ 0 has a removable singularity at z = 0: we can define f(0) = 1 and the resulting function will be continuous and even differentiable (a consequence of L'Hopital's rule).

Formally, if U is an open subset of the complex plane C, a is an element of U and f : U - {a} → C is a holomorphic function, then z is called a removable singularity for f if there exists a holomorphic function g : UC which coincides with f on U - {a}. Such a holomorphic function g exists if and only if the limit limza f(z) exists; this limit is then equal to g(a).

Riemann's theorem on removable singularities states that the singularity a is removable if and only if there exists a neighborhood of a on which f is bounded.

The removable singularities are precisely the poles of order 0.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
KANU

... amended the constitution, making Kenya officially a one-party state, and parliamentary elections were held in September 1983. The 1988 elections reinforced th ...

 
 
 
This page was created in 35.1 ms