Encyclopedia > Relatively prime

  Article Content


Redirected from Relatively prime

In mathematics, the integers a and b are said to be coprime or relatively prime iff they have no common factor other than 1 and -1, or equivalently, if their greatest common divisor is 1.

For example, 6 and 35 are coprime, but 6 and 27 are not because they are both divisible by 3. 1 is coprime to every integer; 0 is coprime only to 1 and -1.

A fast way to determine whether two numbers are coprime is given by the Euclidean algorithm.


The numbers a and b are coprime if and only if there exist integers x and y such that ax + by = 1 (see Bézout's identity). Equivalently, b has a multiplicative inverse modulo a: there exists an integer y such that by ≡ 1 (mod a).

If a and b are coprime and a divides a product bc, then a divides c.

If a and b are coprime and bxby (mod a), then xy (mod a). In other words: b yields a unit in the ring Za of integers modulo a.

The two integers a and b are coprime if and only if the point with coordinates (a,b) in an Cartesian coordinate system is "visible" from the origin (0,0), in the sense that there is no point with integer coordinates between the origin and (a,b).

The probability that two randomly chosen integers are relatively prime is 6/π2 (see Pi).

Two natural numbers a and b are coprime if and only if the numbers 2a-1 and 2b-1 are coprime.


Two ideals A and B in the commutative ring R are called coprime if A + B = R. This generalizes Bezout's identity. If A and B are coprime, then AB = AB; furthermore, if C is a third ideal such that A contains BC, then A contains C.

With this definition, two principal ideals (a) and (b) in the ring of integers Z are coprime if and only if a and b are coprime.

See also: Greatest common divisor

All Wikipedia text is available under the terms of the GNU Free Documentation License

  Search Encyclopedia

Search over one million articles, find something about almost anything!
  Featured Article

... 190s 200s 210s 220s 230s - 240s - 250s 260s 270s 280s 290s Years: 237 238 239 240 241 - 242 - 243 244 245 246 247 Events Patriarch Titus[?] succeeds Patriarch ...

This page was created in 36.7 ms