Encyclopedia > Preorder

  Article Content

Preorder

A binary relation <= over a set X is a preorder if it is
  1. reflexive, that is, for all a in X it holds that a <= a, and
  2. transitive, that is, for all a, b and c in X it holds that if a <= b and b <= c then a <= c.

If a preorder is also antisymmetric, that is, for all a and b in X it holds that if a <= b and b <= a then a = b, then it is a partial order.

A partial order can be constructed from a preorder by defining an equivalence relation == over X such that a == b iff a <= b and b <= a. The relation implied by <= over the quotient set X / ==, that is, the set of all equivalence classes defined by ==, then forms a partial order.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Canadian Charter of Rights and Freedoms

... Charter limitations clause states: The Canadian Charter of Rights and Freedoms guarantees the rights and freedoms set out in it subject only to such reasonable limits ...

 
 
 
This page was created in 26.5 ms