where:
For example, to test the hypothesis that a random sample of 100 people has been drawn from a population in which men and women are equal in frequency, the observed number of men and women would be compared to the theoretical frequencies of 50 men and 50 women. If there were 45 men in the sample and 55 women:
There is one degree of freedom in the comparison (since either difference between observed and expected frequencies, once known, dictates the other). Consultation of the chisquare distribution for 1 degree of freedom shows that the probability of observing this difference if men and women are equally numerous in the population is greater than 0.3. This probability is higher than conventional criteria for statistical significance, so normally we would accept the null hypothesis that the number of men in the population is the same as the number of women.
Pearson's chisquare is used to assess two types of comparison: tests of goodness of fit and tests of independence. A test of goodness of fit establishes whether or not an observed frequency distribution differs from a theoretical distribution. A test of independence assesses whether paired observations on two variables are independent of each other – for example, whether people from different regions differ in the frequecy with which they report that they support a political candidate.
Pearson's chisquare is the original and most widelyused chisquare test.
See also Yates' correction for continuity, median test.
Search Encyclopedia

Featured Article
