Encyclopedia > Morlet wavelet

  Article Content

Morlet wavelet

The Morlet wavelet, named after Jean Morlet[?], is a symmetric and periodic wavelet that results from the superposition of a sine and a Gaussian. In complex notation this can be written as:

<math>\psi(t) = \pi^{-1/4} \exp(i \omega_0 t - t^2 / 2)</math>

Because of its smoothness and periodicity, the Morlet wavelet is a good choice for data that is varying continuously in time and is periodic or quasi-periodic, for example atmospheric indices, such as the NAO[?] index.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Monty Woolley

... Woolley Monty Woolley (August 17, 1888 - May 6, 1963) was an American actor. Born Edgar Montillion Wooley in New York City, Woolley was a professor and lecturer at ...

 
 
 
This page was created in 26.4 ms