Encyclopedia > Morlet wavelet

  Article Content

Morlet wavelet

The Morlet wavelet, named after Jean Morlet[?], is a symmetric and periodic wavelet that results from the superposition of a sine and a Gaussian. In complex notation this can be written as:

<math>\psi(t) = \pi^{-1/4} \exp(i \omega_0 t - t^2 / 2)</math>

Because of its smoothness and periodicity, the Morlet wavelet is a good choice for data that is varying continuously in time and is periodic or quasi-periodic, for example atmospheric indices, such as the NAO[?] index.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
KANU

... On October 14, Moi became President formally after he was elected head of KANU and designated its sole nominee. In June 1982, the National Assembly amended the ...

 
 
 
This page was created in 31.4 ms