Encyclopedia > Minimal polynomial

  Article Content

Minimal polynomial

The minimal polynomial of an n-by-n matrix A over a field F is the monic[?] polynomial p(x) over F such that p(A)=0.

The following three statements are equivalent:

  1. λ∈F is a root of p(x),
  2. λ is a root of the characteristic polynomial of A,
  3. λ is an eigenvalue of A.

The multiplicity of a root λ of p(x) is the geometrical multiplicity of &lambda and is the size of the largest Jordan block[?] corresponding to &lambda.

This is still a stub.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Thomas a Kempis

... and transubstantiation (iv. 2), purgatory (iv. 9), and the worship of saints (i. 13, ii. 9, iii. 6, 59). In other works, however, Thomas à Kempis exalts Mary ...

 
 
 
This page was created in 22.6 ms