The
Clay Mathematics Institute (CMI) is a private, non-profit foundation, based in
Cambridge, Massachusetts, and dedicated to increasing and disseminating
mathematical knowledge. It gives out various awards and sponsorships to promising mathematicians. The institute was founded in 1998 by businessman Landon T. Clay, who financed it, and
Harvard mathematician Arthur Jaffe.
The institute is best known for its establishment on May 24, 2000 of the Millennium Prize Problems. These seven problems are considered by CMI to be "important classic questions that have resisted solution over the years". The first person to solve each problem will be awarded $1,000,000 by CMI. In announcing the prize, CMI drew a parallel to Hilbert's problems, which were proposed in 1900, and had a substantial impact on 20th century mathematics.
The seven Millennium Prize Problems are:
The question is whether there are any problems for which a computer can check an answer quickly, but cannot find the answer quickly. This is generally considered the most important open question in
theoretical computer science. See
Complexity classes P and NP for a more complete discussion.
The
Hodge conjecture is that for
projective algebraic varieties[?],
Hodge cycles[?] are rational, linear, combinations of
algebraic cycles[?].
In
topology, a sphere with a two-dimensional surface is essentially characterized by the fact it is
simply connected. The
Poincaré conjecture is that this is also true for spheres with three-dimensional surfaces. The question has been solved for all dimensions above three. Solving it for three is central to the problem of classifying 3-manifolds.
The
Riemann hypothesis is that all nontrivial zeros of the
Riemann zeta function have a real part of 1/2. A proof or disproof of this would have far-reaching implications in
number theory, especially for the distribution of
prime numbers. This was
Hilbert's eighth problem, and is still considered an important open problem a century later.
In physics,
quantum Yang-Mills theory[?] describes particles with positive mass having classical waves travelling at the speed of light. This is the
mass gap[?]. The problem is to establish the existence of the Yang-Mills theory and a mass gap.
The
Navier-Stokes equations describe the movement of liquids and gases. Although they were found in the 19th century, they still are not well understood. The problem is to make progress toward a mathematical theory that will give us insight into these equations.
The
Birch and Swinnerton-Dyer conjecture[?] deals with a certain type of equation, those defining
elliptic curves over the
rational numbers. The conjecture is that there is a simple way to tell whether such equations have a finite or infinite number of rational solutions.
Hilbert's tenth problem dealt with a more general type of equation, and in that case it was proved that there is no way to decide whether a given equation even has any solutions.
All Wikipedia text
is available under the
terms of the GNU Free Documentation License