Encyclopedia > Mean squared error

  Article Content

Mean squared error

In statistics the mean squared error of an estimator T of an unobservable parameter θ is
<math>\operatorname{MSE}(T)=\operatorname{E}((T-\theta)^2),</math>
i.e., it is the expected value of the square of the "error". The "error" is the amount by which the estimator differs from the quantity to be estimated. The mean squared error satisfies the identity
<math>\operatorname{MSE}(T)=\operatorname{var}(T)+(\operatorname{bias}(T))^2</math>
where
<math>\operatorname{bias}(T)=E(T)-\theta,</math>
i.e., the bias is the amount by which the expected value of the estimator differs from the unobservable quantity to be estimated.

Here is a concrete example. Suppose

<math>X_1,\dots,X_n\sim\operatorname{N}(\mu,\sigma^2),</math>
i.e., this is a random sample of size n from a normally distributed population. Two estimators of σ2 are sometimes used (as are others):
<math>\frac{1}{n}\sum_{i=1}^n\left(X_i-\overline{X}\,\right)^2\ {\rm and}\ \frac{1}{n-1}\sum_{i=1}^n\left(X_i-\overline{X}\,\right)^2 </math>
where
<math>\overline{X}=(X_1+\cdots+X_n)/n</math>
is the "sample mean". The first of these estimators is the maximum likelihood estimator, and is biased, i.e., its bias is not zero, but has a smaller variance than the second, which is unbiased. The smaller variance compensates somewhat for the bias, so that the mean squared error of the biased estimator is slightly smaller than that of the unbiased estimator.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Battle Creek, Michigan

... 21,348 households, and 13,363 families residing in the city. The population density is 481.1/km² (1,246.0/mi²). There are 23,525 housing units at an averag ...

 
 
 
This page was created in 35.9 ms