Encyclopedia > Matrix addition

  Article Content

Matrix addition

The usual matrix addition is defined for two matrices of same dimensions. The sum of two m-by-n matrices A and B, denoted by A + B, is again an m-by-n matrix computed by adding corresponding elements, i.e., (A + B)[i, j] = A[i, j] + B[i, j]. For example

<math>
  \begin{bmatrix}
    1 & 3 \\
    1 & 0 \\
    1 & 2
  \end{bmatrix}
+
  \begin{bmatrix}
    0 & 0 \\
    7 & 5 \\
    2 & 1
  \end{bmatrix}

\begin{bmatrix} 1+0 & 3+0 \\ 1+7 & 0+5 \\ 1+2 & 2+1 \end{bmatrix}

  \begin{bmatrix}
    1 & 3 \\
    8 & 5 \\
    3 & 3
  \end{bmatrix}
</math>

The m × n matrices with matrix addition as operation form an abelian group.

For any arbitrary matrices A (of size m × n) and B (of size p × q) , we have the direct sum of A and B, denoted by AB and defined as

 
<math>
  A \oplus B =
  \begin{bmatrix}
     a_{11} & \cdots & a_{1n} &      0 & \cdots &      0 \\
     \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\
    a_{m 1} & \cdots & a_{mn} &      0 & \cdots &      0 \\
          0 & \cdots &      0 & b_{11} & \cdots &  b_{1q} \\
     \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\
          0 & \cdots &      0 & b_{p1} & \cdots &  b_{pq} 
  \end{bmatrix}
</math>

For instance,

<math>
  \begin{bmatrix}
    1 & 3 & 2 \\
    2 & 3 & 1
  \end{bmatrix}
\oplus
  \begin{bmatrix}
    1 & 6 \\
    0 & 1
  \end{bmatrix}
=
  \begin{bmatrix}
    1 & 3 & 2 & 0 & 0 \\
    2 & 3 & 1 & 0 & 0 \\
    0 & 0 & 0 & 1 & 6 \\
    0 & 0 & 0 & 0 & 1
  \end{bmatrix}
</math>



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Springs, New York

... of which 29.7% have children under the age of 18 living with them, 51.2% are married couples living together, 8.9% have a female householder with no husband present, and ...

 
 
 
This page was created in 44.5 ms