Encyclopedia > List of integrals of logarithmic functions

  Article Content

List of integrals of logarithmic functions

The following is a list of Integrals (Antiderivative functions) of logarithmic functions[?]. For a complete list of Integral functions, please see Table of Integrals and List of integrals.

Note: <math>x > 0</math> is assumed throughout this article.

<math>\int\ln x\,dx = x\ln x - x</math>

<math>\int (\ln x)^2 dx = x(\ln x)^2 - 2x\ln x + 2x</math>

<math>\int (\ln x)^n dx = x(\ln x)^n - n\int (\ln x)^{n-1} dx \qquad\mbox{(for }n\neq 1\mbox{)}</math>

<math>\int \frac{dx}{\ln x} = \ln|\ln x| + \ln x + \sum^\infty_{i=2}\frac{(\ln x)^i}{i\cdot i!}</math>

<math>\int \frac{dx}{(\ln x)^n} = -\frac{x}{(n-1)(\ln x)^{n-1}} + \frac{1}{n-1}\int\frac{dx}{(\ln x)^{n-1}} \qquad\mbox{(for }n\neq 1\mbox{)}</math>

<math>\int x^m\ln x\,dx = x^{m+1}\left(\frac{\ln x}{m+1}-\frac{1}{(m+1)^2}\right) \qquad\mbox{(for }m\neq 1\mbox{)}</math>

<math>\int x^m (\ln x)^n dx = \frac{x^{m+1}(\ln x)^n}{m+1} - \frac{n}{m+1}\int x^m (\ln x)^{n-1} dx \qquad\mbox{(for }m,n\neq 1\mbox{)}</math>

<math>\int \frac{(\ln x)^n dx}{x} = \frac{(\ln x)^{n+1}}{n+1} \qquad\mbox{(for }n\neq 1\mbox{)}</math>

<math>\int \frac{\ln x\,dx}{x^m} = -\frac{\ln x}{(m-1)x^{m-1}}-\frac{1}{(m-1)^2 x^{m-1}} \qquad\mbox{(for }m\neq 1\mbox{)}</math>

<math>\int \frac{(\ln x)^n dx}{x^m} = -\frac{(\ln x)^n}{(m-1)x^{m-1}} + \frac{n}{m-1}\int\frac{(\ln x)^{n-1} dx}{x^m} \qquad\mbox{(for }m,n\neq 1\mbox{)}</math>

<math>\int \frac{x^m dx}{(ln x)^n} = -\frac{x^{m+1}}{(n-1)(\ln x)^{n-1}} + \frac{m+1}{n-1}\int\frac{x^m dx}{(ln x)^{n-1}} \qquad\mbox{(for }n\neq 1\mbox{)}</math>

<math>\int \frac{dx}{x\ln x} = \ln|\ln x|</math>

<math>\int \frac{dx}{x^n\ln x} = \ln|\ln x| + \sum^\infty_{i=1} (-1)^i\frac{(n-1)^i(\ln x)^i}{i\cdot i!}</math>

<math>\int \frac{dx}{x (\ln x)^n} = -\frac{1}{(n-1)(\ln x)^{n-1}} \qquad\mbox{(for }n\neq 1\mbox{)}</math>

<math>\int \sin (\ln x)\,dx = \frac{x}{2}(\sin (\ln x) - \cos (\ln x))</math>

<math>\int \cos (\ln x)\,dx = \frac{x}{2}(\sin (\ln x) + \cos (\ln x))</math>



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Museums in England

... Tyldesley[?] British Commercial Vehicle Museum[?], Leyland[?] London British Museum Imperial War Museum -- see also Manchester The London Institute Madame ...

 
 
 
This page was created in 47.1 ms