Encyclopedia > List of integrals of hyperbolic functions

  Article Content

List of integrals of hyperbolic functions

The following is a list of Integrals (Antiderivative functions) of hyperbolic functions. For a complete list of Integral functions, please see Table of Integrals and List of integrals.

<math>\int\sinh cx\,dx = \frac{1}{c}\cosh cx</math>

<math>\int\cosh cx\,dx = \frac{1}{c}\sinh cx</math>

<math>\int\sinh^2 cx\,dx = \frac{1}{4c}\sinh 2cx - \frac{x}{2}</math>

<math>\int\cosh^2 cx\,dx = \frac{1}{4c}\sinh 2cx + \frac{x}{2}</math>

<math>\int\sinh^n cx\,dx = \frac{1}{cn}\sinh^{n-1} cx\cosh cx - \frac{n-1}{n}\int\sinh^{n-2} cx\,dx \qquad\mbox{(for }n>0\mbox{)}</math>

also: <math>\int\sinh^n cx\,dx = \frac{1}{c(n+1)}\sinh^{n+1} cx\cosh cx - \frac{n+2}{n+1}\int\sinh^{n+2}cx\,dx \qquad\mbox{(for }n<0\mbox{, }n\neq -1\mbox{)}</math>

<math>\int\cosh^n cx\,dx = \frac{1}{cn}\sinh cx\cosh^{n-1} cx + \frac{n-1}{n}\int\cosh^{n-2} cx\,dx \qquad\mbox{(for }n>0\mbox{)}</math>

also: <math>\int\cosh^n cx\,dx = -\frac{1}{c(n+1)}\sinh cx\cosh^{n+1} cx - \frac{n+2}{n+1}\int\cosh^{n+2}cx\,dx \qquad\mbox{(for }n<0\mbox{, }n\neq -1\mbox{)}</math>

<math>\int\frac{dx}{\sinh cx} = \frac{1}{c} \ln\left|\tanh\frac{cx}{2}\right|</math>

also: <math>\int\frac{dx}{\sinh cx} = \frac{1}{c} \ln\left|\frac{\cosh cx - 1}{\sinh cx}\right|</math>

also: <math>\int\frac{dx}{\sinh cx} = \frac{1}{c} \ln\left|\frac{\sinh cx}{\cosh cx + 1}\right|</math>

also: <math>\int\frac{dx}{\sinh cx} = \frac{1}{c} \ln\left|\frac{\cosh cx - 1}{\cosh cx + 1}\right|</math>

<math>\int\frac{dx}{\cosh cx} = \frac{2}{c} \arctan e^{cx}</math>

<math>\int\frac{dx}{\sinh^n cx} = \frac{\cosh cx}{c(n-1)\sinh^{n-1} cx}-\frac{n-2}{n-1}\int\frac{dx}{\sinh^{n-2} cx} \qquad\mbox{(for }n\neq 1\mbox{)}</math>

<math>\int\frac{dx}{\cosh^n cx} = \frac{\sinh cx}{c(n-1)\cosh^{n-1} cx}+\frac{n-2}{n-1}\int\frac{dx}{\cosh^{n-2} cx} \qquad\mbox{(for }n\neq 1\mbox{)}</math>

<math>\int\frac{\cosh^n cx}{\sinh^m cx} dx = \frac{\cosh^{n-1} cx}{c(n-m)\sinh^{m-1} cx} + \frac{n-1}{n-m}\int\frac{\cosh^{n-2} cx}{\sinh^m cx} dx \qquad\mbox{(for }m\neq n\mbox{)}</math>

also: <math>\int\frac{\cosh^n cx}{\sinh^m cx} dx = -\frac{\cosh^{n+1} cx}{c(m-1)\sinh^{m-1} cx} + \frac{n-m+2}{m-1}\int\frac{\cosh^n cx}{\sinh^{m-2} cx} dx \qquad\mbox{(for }m\neq 1\mbox{)}</math>

also: <math>\int\frac{\cosh^n cx}{\sinh^m cx} dx = -\frac{\cosh^{n-1} cx}{c(m-1)\sinh^{m-1} cx} + \frac{n-1}{m-1}\int\frac{\cosh^{n-2} cx}{\sinh^{m-2} cx} dx \qquad\mbox{(for }m\neq 1\mbox{)}</math>

<math>\int\frac{\sinh^m cx}{\cosh^n cx} dx = \frac{\sinh^{m-1} cx}{c(m-n)\cosh^{n-1} cx} + \frac{m-1}{m-n}\int\frac{\sinh^{m-2} cx}{\cosh^n cx} dx \qquad\mbox{(for }m\neq n\mbox{)}</math>

also: <math>\int\frac{\sinh^m cx}{\cosh^n cx} dx = \frac{\sinh^{m+1} cx}{c(n-1)\cosh^{n-1} cx} + \frac{m-n+2}{n-1}\int\frac{\sinh^m cx}{\cosh^{n-2} cx} dx \qquad\mbox{(for }n\neq 1\mbox{)}</math>

also: <math>\int\frac{\sinh^m cx}{\cosh^n cx} dx = -\frac{\sinh^{m-1} cx}{c(n-1)\cosh^{n-1} cx} + \frac{m-1}{n-1}\int\frac{\sinh^{m -2} cx}{\cosh^{n-2} cx} dx \qquad\mbox{(for }n\neq 1\mbox{)}</math>

<math>\int x\sinh cx\,dx = \frac{1}{c} x\cosh cx - \frac{1}{c^2}\sinh cx</math>

<math>\int x\cosh cx\,dx = \frac{1}{c} x\sinh cx - \frac{1}{c^2}\cosh cx</math>

<math>\int \tanh cx\,dx = \frac{1}{c}\ln|\cosh cx|</math>

<math>\int \coth cx\,dx = \frac{1}{c}\ln|\sinh cx|</math>

<math>\int \tanh^n cx\,dx = -\frac{1}{c(n-1)}\tanh^{n-1} cx+\int\tanh^{n-2} cx\,dx \qquad\mbox{(for }n\neq 1\mbox{)}</math>

<math>\int \coth^n cx\,dx = -\frac{1}{c(n-1)}\coth^{n-1} cx+\int\coth^{n-2} cx\,dx \qquad\mbox{(for }n\neq 1\mbox{)}</math>

<math>\int \sinh bx \sinh cx\,dx = \frac{1}{b^2-c^2} (b\sinh cx \cosh bx - c\cosh cx \sinh bx) \qquad\mbox{(for }b^2\neq c^2\mbox{)}</math>

<math>\int \cosh bx \cosh cx\,dx = \frac{1}{b^2-c^2} (b\sinh bx \cosh cx - c\sinh cx \cosh bx) \qquad\mbox{(for }b^2\neq c^2\mbox{)}</math>

<math>\int \cosh bx \sinh cx\,dx = \frac{1}{b^2-c^2} (b\sinh bx \sinh cx - c\cosh bx \cosh cx) \qquad\mbox{(for }b^2\neq c^2\mbox{)}</math>

<math>\int \sinh (ax+b)\sin (cx+d)\,dx = \frac{a}{a^2+c^2}\cosh(ax+b)\sin(cx+d)-\frac{c}{a^2+c^2}\sinh(ax+b)\cos(cx+d)</math>

<math>\int \sinh (ax+b)\cos (cx+d)\,dx = \frac{a}{a^2+c^2}\cosh(ax+b)\cos(cx+d)+\frac{c}{a^2+c^2}\sinh(ax+b)\sin(cx+d)</math>

<math>\int \cosh (ax+b)\sin (cx+d)\,dx = \frac{a}{a^2+c^2}\sinh(ax+b)\sin(cx+d)-\frac{c}{a^2+c^2}\cosh(ax+b)\cos(cx+d)</math>

<math>\int \cosh (ax+b)\cos (cx+d)\,dx = \frac{a}{a^2+c^2}\sinh(ax+b)\cos(cx+d)+\frac{c}{a^2+c^2}\cosh(ax+b)\sin(cx+d)</math>



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Northampton, Suffolk County, New York

... of age or older. The average household size is 2.96 and the average family size is 3.31. In the town the population is spread out with 29.3% under the age of 18, 9.6% ...

 
 
 
This page was created in 35.1 ms