Encyclopedia > List of integrals of arc functions

  Article Content

List of integrals of arc functions

The following is a list of Integrals (Antiderivative functions) of area functions[?]. For a complete list of Integral functions, please see Table of Integrals and List of integrals.

<math>\int\arcsin\frac{x}{c}\,dx = x\arcsin\frac{x}{c} + \sqrt{c^2-x^2}</math>

<math>\int x \arcsin\frac{x}{c}\,dx = \left(\frac{x^2}{2}-\frac{c^2}{4}\right)\arcsin\frac{x}{c} + \frac{x}{4}\sqrt{c^2-x^2}</math>

<math>\int x^2 \arcsin\frac{x}{c}\,dx = \frac{x^3}{3}\arcsin\frac{x}{c} + \frac{x^2+2c^2}{9}\sqrt{c^2-x^2}</math>

<math>\int\arccos\frac{x}{c}\,dx = x\arccos\frac{x}{c} - \sqrt{c^2-x^2}</math>

<math>\int x \arccos\frac{x}{c}\,dx = \left(\frac{x^2}{2}-\frac{c^2}{4}\right)\arccos\frac{x}{c} - \frac{x}{4}\sqrt{c^2-x^2}</math>

<math>\int x^2 \arccos\frac{x}{c}\,dx = \frac{x^3}{3}\arccos\frac{x}{c} - \frac{x^2+2c^2}{9}\sqrt{c^2-x^2}</math>

<math>\int\arctan\frac{x}{c}\,dx = x\arctan\frac{x}{c} - \frac{c}{2}\ln(c^2+x^2)</math>

<math>\int x \arctan\frac{x}{c}\,dx = \frac{c^2+x^2}{2}\arctan\frac{x}{c} - \frac{cx}{2}</math>

<math>\int x^2 \arctan\frac{x}{c}\,dx = \frac{x^3}{3}\arctan\frac{x}{c} - \frac{cx^2}{6} + \frac{c^3}{6}\ln{c^2+x^2}</math>

<math>\int x^n \arctan\frac{x}{c}\,dx = \frac{x^{n+1}}{n+1}\arctan\frac{x}{c} - \frac{c}{n+1}\int\frac{x^{n+1} dx}{c^2+x^2} \qquad\mbox{(for }n\neq 1\mbox{)}</math>

<math>\int\mathrm{arccot}\,\frac{x}{c}\,dx = x\,\mathrm{arccot}\,\frac{x}{c} + \frac{c}{2}\ln(c^2+x^2)</math>

<math>\int x\,\mathrm{arccot}\,\frac{x}{c}\,dx = \frac{c^2+x^2}{2}\,\mathrm{arccot}\,\frac{x}{c} + \frac{cx}{2}</math>

<math>\int x^2\,\mathrm{arccot}\,\frac{x}{c}\,dx = \frac{x^3}{3}\,\mathrm{arccot}\,\frac{x}{c} + \frac{cx^2}{6} - \frac{c^3}{6}\ln(c^2+x^2)</math>

<math>\int x^n\,\mathrm{arccot}\,\frac{x}{c}\,dx = \frac{x^{n+1}}{n+1}\,\mathrm{arccot}\,\frac{x}{c} + \frac{c}{n+1}\int\frac{x^{n+1} dx}{c^2+x^2} \qquad\mbox{(for }n\neq 1\mbox{)}</math>



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Monty Woolley

... in 1936. He was typecast as the wasp-tongued, supercillious sophisticate. His most famous role is that of the cranky professor forced to stay immobile because of ...

 
 
 
This page was created in 45.6 ms