Encyclopedia > List of Integrals (rational functions)

  Article Content

List of integrals of rational functions

Redirected from List of Integrals (rational functions)

The following is a list of Integrals (Antiderivative functions) of rational functions[?]. For a complete list of Integral functions, please see Table of Integrals and List of integrals.

<math>\int (ax + b)^n dx = \frac{(ax + b)^{n+1}}{a(n + 1)} \qquad\mbox{(for } n\neq -1\mbox{)}</math>

<math>\int\frac{dx}{ax + b} = \frac{1}{a}\ln\left|ax + b\right|</math>

<math>\int x(ax + b)^n dx = \frac{a(n + 1)x - b}{a^2(n + 1)(n + 2)} (ax + b)^{n+1} \qquad\mbox{(for }n \not\in \{-1, -2\}\mbox{)}</math>

<math>\int\frac{x\;dx}{ax + b} = \frac{x}{a} - \frac{b}{a^2}\ln\left|ax + b\right|</math>

<math>\int\frac{x\;dx}{(ax + b)^2} = \frac{b}{a^2(ax + b)} + \frac{1}{a^2}\ln\left|ax + b\right|</math>

<math>\int\frac{x\;dx}{(ax + b)^n} = \frac{a(1 - n)x - b}{a^2(n - 1)(n - 2)(ax + b)^{n-1}} \qquad\mbox{(for } n\not\in \{-1, -2\}\mbox{)}</math>

<math>\int\frac{x^2\;dx}{ax + b} = \frac{1}{a^3}\left(\frac{(ax + b)^2}{2} - 2b(ax + b) + b^2\ln\left|ax + b\right|\right)</math>

<math>\int\frac{x^2\;dx}{(ax + b)^2} = \frac{1}{a^3}\left(ax + b - 2b\ln\left|ax + b\right| - \frac{b^2}{ax + b}\right)</math>

<math>\int\frac{x^2\;dx}{(ax + b)^3} = \frac{1}{a^3}\left(\ln\left|ax + b\right| + \frac{2b}{ax + b} - \frac{b^2}{2(ax + b)^2}\right)</math>

<math>\int\frac{x^2\;dx}{(ax + b)^n} = \frac{1}{a^3}\left(-\frac{1}{(n- 3)(ax + b)^{n-3}} + \frac{2b}{(n-2)(a + b)^{n-2}} - \frac{b^2}{(n - 1)(ax + b)^{n-1}}\right) \qquad\mbox{(for } n\not\in \{1, 2, 3\}\mbox{)}</math>

<math>\int\frac{dx}{x(ax + b)} = -\frac{1}{b}\ln\left|\frac{ax+b}{x}\right|</math>

<math>\int\frac{dx}{x^2(ax+b)} = -\frac{1}{bx} + \frac{a}{b^2}\ln\left|\frac{ax+b}{x}\right|</math>

<math>\int\frac{dx}{x^2(ax+b)^2} = -a\left(\frac{1}{b^2(ax+b)} + \frac{1}{ab^2x} - \frac{2}{b^3}\ln\left|\frac{ax+b}{x}\right|\right)</math>

<math>\int\frac{dx}{x^2+a^2} = \frac{1}{a}\arctan\frac{x}{a}</math>

<math>\int\frac{dx}{x^2-a^2} = -\frac{1}{a}\,\mathrm{artanh}\frac{x}{a} = \frac{1}{2a}\ln\frac{a-x}{a+x} \qquad\mbox{(for }|x| < |a|\mbox{)}</math>

<math>\int\frac{dx}{x^2-a^2} = -\frac{1}{a}\,\mathrm{arcoth}\frac{x}{a} = \frac{1}{2a}\ln\frac{x-a}{x+a} \qquad\mbox{(for }|x| > |a|\mbox{)}</math>

<math>\int\frac{dx}{ax^2+bx+c} = \frac{2}{\sqrt{4ac-b^2}}\arctan\frac{2ax+b}{\sqrt{4ac-b^2}} \qquad\mbox{(for }4ac-b^2>0\mbox{)}</math>

<math>\int\frac{dx}{ax^2+bx+c} = \frac{2}{\sqrt{b^2-4ac}}\,\mathrm{artanh}\frac{2ax+b}{\sqrt{b^2-4ac}} = \frac{1}{\sqrt{b^2-4ac}}\ln\left|\frac{2ax+b-\sqrt{b^2-4ac}}{2ax+b+\sqrt{b^2-4ac}}\right| \qquad\mbox{(for }4ac-b^2<0\mbox{)}</math>

<math>\int\frac{x\;dx}{ax^2+bx+c} = \frac{1}{2a}\ln\left|ax^2+bx+c\right|-\frac{b}{2a}\int\frac{dx}{ax^2+bx+c}</math>

<math>\int\frac{mx+n}{ax^2+bx+c}dx = \frac{m}{2a}\ln\left|ax^2+bx+c\right|+\frac{2an-bm}{a\sqrt{4ac-b^2}}\arctan\frac{2ax+b}{\sqrt{4ac-b^2}} \qquad\mbox{(for }4ac-b^2>0\mbox{)}</math>

<math>\int\frac{mx+n}{ax^2+bx+c}dx = \frac{m}{2a}\ln\left|ax^2+bx+c\right|+\frac{2an-bm}{a\sqrt{b^2-4ac}}\,\mathrm{artanh}\frac{2ax+b}{\sqrt{b^2-4ac}} \qquad\mbox{(for }4ac-b^2<0\mbox{)}</math>

<math>\int\frac{dx}{(ax^2+bx+c)^n} = \frac{2ax+b}{(n-1)(4ac-b^2)(ax^2+bx+c)^{n-1}}+\frac{(2n-3)2a}{(n-1)(4ac-b^2)}\int\frac{dx}{(ax^2+bx+c)^{n-1}}</math>

<math>\int\frac{x\;dx}{(ax^2+bx+c)^n} = \frac{bx+2c}{(n-1)(4ac-b^2)(ax^2+bx+c)^{n-1}}-\frac{b(2n-3)}{(n-1)(4ac-b^2)}\int\frac{dx}{(ax^2+bx+c)^{n-1}}</math>

<math>\int\frac{dx}{x(ax^2+bx+c)} = \frac{1}{2c}\ln\left|\frac{x^2}{ax^2+bx+c}\right|-\frac{b}{2c}\int\frac{dx}{ax^2+bx+c}</math>



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
List of closed London Underground stations

... deep-level stations have closed platforms: Charing Cross tube station (for the Jubilee Line) Holborn tube station (for the Aldwych branch of the Piccadilly ...

 
 
 
This page was created in 45.6 ms