Encyclopedia > List of Integrals (rational functions)

  Article Content

List of integrals of rational functions

Redirected from List of Integrals (rational functions)

The following is a list of Integrals (Antiderivative functions) of rational functions[?]. For a complete list of Integral functions, please see Table of Integrals and List of integrals.

<math>\int (ax + b)^n dx = \frac{(ax + b)^{n+1}}{a(n + 1)} \qquad\mbox{(for } n\neq -1\mbox{)}</math>

<math>\int\frac{dx}{ax + b} = \frac{1}{a}\ln\left|ax + b\right|</math>

<math>\int x(ax + b)^n dx = \frac{a(n + 1)x - b}{a^2(n + 1)(n + 2)} (ax + b)^{n+1} \qquad\mbox{(for }n \not\in \{-1, -2\}\mbox{)}</math>

<math>\int\frac{x\;dx}{ax + b} = \frac{x}{a} - \frac{b}{a^2}\ln\left|ax + b\right|</math>

<math>\int\frac{x\;dx}{(ax + b)^2} = \frac{b}{a^2(ax + b)} + \frac{1}{a^2}\ln\left|ax + b\right|</math>

<math>\int\frac{x\;dx}{(ax + b)^n} = \frac{a(1 - n)x - b}{a^2(n - 1)(n - 2)(ax + b)^{n-1}} \qquad\mbox{(for } n\not\in \{-1, -2\}\mbox{)}</math>

<math>\int\frac{x^2\;dx}{ax + b} = \frac{1}{a^3}\left(\frac{(ax + b)^2}{2} - 2b(ax + b) + b^2\ln\left|ax + b\right|\right)</math>

<math>\int\frac{x^2\;dx}{(ax + b)^2} = \frac{1}{a^3}\left(ax + b - 2b\ln\left|ax + b\right| - \frac{b^2}{ax + b}\right)</math>

<math>\int\frac{x^2\;dx}{(ax + b)^3} = \frac{1}{a^3}\left(\ln\left|ax + b\right| + \frac{2b}{ax + b} - \frac{b^2}{2(ax + b)^2}\right)</math>

<math>\int\frac{x^2\;dx}{(ax + b)^n} = \frac{1}{a^3}\left(-\frac{1}{(n- 3)(ax + b)^{n-3}} + \frac{2b}{(n-2)(a + b)^{n-2}} - \frac{b^2}{(n - 1)(ax + b)^{n-1}}\right) \qquad\mbox{(for } n\not\in \{1, 2, 3\}\mbox{)}</math>

<math>\int\frac{dx}{x(ax + b)} = -\frac{1}{b}\ln\left|\frac{ax+b}{x}\right|</math>

<math>\int\frac{dx}{x^2(ax+b)} = -\frac{1}{bx} + \frac{a}{b^2}\ln\left|\frac{ax+b}{x}\right|</math>

<math>\int\frac{dx}{x^2(ax+b)^2} = -a\left(\frac{1}{b^2(ax+b)} + \frac{1}{ab^2x} - \frac{2}{b^3}\ln\left|\frac{ax+b}{x}\right|\right)</math>

<math>\int\frac{dx}{x^2+a^2} = \frac{1}{a}\arctan\frac{x}{a}</math>

<math>\int\frac{dx}{x^2-a^2} = -\frac{1}{a}\,\mathrm{artanh}\frac{x}{a} = \frac{1}{2a}\ln\frac{a-x}{a+x} \qquad\mbox{(for }|x| < |a|\mbox{)}</math>

<math>\int\frac{dx}{x^2-a^2} = -\frac{1}{a}\,\mathrm{arcoth}\frac{x}{a} = \frac{1}{2a}\ln\frac{x-a}{x+a} \qquad\mbox{(for }|x| > |a|\mbox{)}</math>

<math>\int\frac{dx}{ax^2+bx+c} = \frac{2}{\sqrt{4ac-b^2}}\arctan\frac{2ax+b}{\sqrt{4ac-b^2}} \qquad\mbox{(for }4ac-b^2>0\mbox{)}</math>

<math>\int\frac{dx}{ax^2+bx+c} = \frac{2}{\sqrt{b^2-4ac}}\,\mathrm{artanh}\frac{2ax+b}{\sqrt{b^2-4ac}} = \frac{1}{\sqrt{b^2-4ac}}\ln\left|\frac{2ax+b-\sqrt{b^2-4ac}}{2ax+b+\sqrt{b^2-4ac}}\right| \qquad\mbox{(for }4ac-b^2<0\mbox{)}</math>

<math>\int\frac{x\;dx}{ax^2+bx+c} = \frac{1}{2a}\ln\left|ax^2+bx+c\right|-\frac{b}{2a}\int\frac{dx}{ax^2+bx+c}</math>

<math>\int\frac{mx+n}{ax^2+bx+c}dx = \frac{m}{2a}\ln\left|ax^2+bx+c\right|+\frac{2an-bm}{a\sqrt{4ac-b^2}}\arctan\frac{2ax+b}{\sqrt{4ac-b^2}} \qquad\mbox{(for }4ac-b^2>0\mbox{)}</math>

<math>\int\frac{mx+n}{ax^2+bx+c}dx = \frac{m}{2a}\ln\left|ax^2+bx+c\right|+\frac{2an-bm}{a\sqrt{b^2-4ac}}\,\mathrm{artanh}\frac{2ax+b}{\sqrt{b^2-4ac}} \qquad\mbox{(for }4ac-b^2<0\mbox{)}</math>

<math>\int\frac{dx}{(ax^2+bx+c)^n} = \frac{2ax+b}{(n-1)(4ac-b^2)(ax^2+bx+c)^{n-1}}+\frac{(2n-3)2a}{(n-1)(4ac-b^2)}\int\frac{dx}{(ax^2+bx+c)^{n-1}}</math>

<math>\int\frac{x\;dx}{(ax^2+bx+c)^n} = \frac{bx+2c}{(n-1)(4ac-b^2)(ax^2+bx+c)^{n-1}}-\frac{b(2n-3)}{(n-1)(4ac-b^2)}\int\frac{dx}{(ax^2+bx+c)^{n-1}}</math>

<math>\int\frac{dx}{x(ax^2+bx+c)} = \frac{1}{2c}\ln\left|\frac{x^2}{ax^2+bx+c}\right|-\frac{b}{2c}\int\frac{dx}{ax^2+bx+c}</math>



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
U.S. presidential election, 1804

...     Contents U.S. presidential election, 1804 Presidential CandidateElectoral Vote Party Running Mate(Electoral ...

 
 
 
This page was created in 22.4 ms