Encyclopedia > List of Integrals (rational functions)

  Article Content

List of integrals of rational functions

Redirected from List of Integrals (rational functions)

The following is a list of Integrals (Antiderivative functions) of rational functions[?]. For a complete list of Integral functions, please see Table of Integrals and List of integrals.

<math>\int (ax + b)^n dx = \frac{(ax + b)^{n+1}}{a(n + 1)} \qquad\mbox{(for } n\neq -1\mbox{)}</math>

<math>\int\frac{dx}{ax + b} = \frac{1}{a}\ln\left|ax + b\right|</math>

<math>\int x(ax + b)^n dx = \frac{a(n + 1)x - b}{a^2(n + 1)(n + 2)} (ax + b)^{n+1} \qquad\mbox{(for }n \not\in \{-1, -2\}\mbox{)}</math>

<math>\int\frac{x\;dx}{ax + b} = \frac{x}{a} - \frac{b}{a^2}\ln\left|ax + b\right|</math>

<math>\int\frac{x\;dx}{(ax + b)^2} = \frac{b}{a^2(ax + b)} + \frac{1}{a^2}\ln\left|ax + b\right|</math>

<math>\int\frac{x\;dx}{(ax + b)^n} = \frac{a(1 - n)x - b}{a^2(n - 1)(n - 2)(ax + b)^{n-1}} \qquad\mbox{(for } n\not\in \{-1, -2\}\mbox{)}</math>

<math>\int\frac{x^2\;dx}{ax + b} = \frac{1}{a^3}\left(\frac{(ax + b)^2}{2} - 2b(ax + b) + b^2\ln\left|ax + b\right|\right)</math>

<math>\int\frac{x^2\;dx}{(ax + b)^2} = \frac{1}{a^3}\left(ax + b - 2b\ln\left|ax + b\right| - \frac{b^2}{ax + b}\right)</math>

<math>\int\frac{x^2\;dx}{(ax + b)^3} = \frac{1}{a^3}\left(\ln\left|ax + b\right| + \frac{2b}{ax + b} - \frac{b^2}{2(ax + b)^2}\right)</math>

<math>\int\frac{x^2\;dx}{(ax + b)^n} = \frac{1}{a^3}\left(-\frac{1}{(n- 3)(ax + b)^{n-3}} + \frac{2b}{(n-2)(a + b)^{n-2}} - \frac{b^2}{(n - 1)(ax + b)^{n-1}}\right) \qquad\mbox{(for } n\not\in \{1, 2, 3\}\mbox{)}</math>

<math>\int\frac{dx}{x(ax + b)} = -\frac{1}{b}\ln\left|\frac{ax+b}{x}\right|</math>

<math>\int\frac{dx}{x^2(ax+b)} = -\frac{1}{bx} + \frac{a}{b^2}\ln\left|\frac{ax+b}{x}\right|</math>

<math>\int\frac{dx}{x^2(ax+b)^2} = -a\left(\frac{1}{b^2(ax+b)} + \frac{1}{ab^2x} - \frac{2}{b^3}\ln\left|\frac{ax+b}{x}\right|\right)</math>

<math>\int\frac{dx}{x^2+a^2} = \frac{1}{a}\arctan\frac{x}{a}</math>

<math>\int\frac{dx}{x^2-a^2} = -\frac{1}{a}\,\mathrm{artanh}\frac{x}{a} = \frac{1}{2a}\ln\frac{a-x}{a+x} \qquad\mbox{(for }|x| < |a|\mbox{)}</math>

<math>\int\frac{dx}{x^2-a^2} = -\frac{1}{a}\,\mathrm{arcoth}\frac{x}{a} = \frac{1}{2a}\ln\frac{x-a}{x+a} \qquad\mbox{(for }|x| > |a|\mbox{)}</math>

<math>\int\frac{dx}{ax^2+bx+c} = \frac{2}{\sqrt{4ac-b^2}}\arctan\frac{2ax+b}{\sqrt{4ac-b^2}} \qquad\mbox{(for }4ac-b^2>0\mbox{)}</math>

<math>\int\frac{dx}{ax^2+bx+c} = \frac{2}{\sqrt{b^2-4ac}}\,\mathrm{artanh}\frac{2ax+b}{\sqrt{b^2-4ac}} = \frac{1}{\sqrt{b^2-4ac}}\ln\left|\frac{2ax+b-\sqrt{b^2-4ac}}{2ax+b+\sqrt{b^2-4ac}}\right| \qquad\mbox{(for }4ac-b^2<0\mbox{)}</math>

<math>\int\frac{x\;dx}{ax^2+bx+c} = \frac{1}{2a}\ln\left|ax^2+bx+c\right|-\frac{b}{2a}\int\frac{dx}{ax^2+bx+c}</math>

<math>\int\frac{mx+n}{ax^2+bx+c}dx = \frac{m}{2a}\ln\left|ax^2+bx+c\right|+\frac{2an-bm}{a\sqrt{4ac-b^2}}\arctan\frac{2ax+b}{\sqrt{4ac-b^2}} \qquad\mbox{(for }4ac-b^2>0\mbox{)}</math>

<math>\int\frac{mx+n}{ax^2+bx+c}dx = \frac{m}{2a}\ln\left|ax^2+bx+c\right|+\frac{2an-bm}{a\sqrt{b^2-4ac}}\,\mathrm{artanh}\frac{2ax+b}{\sqrt{b^2-4ac}} \qquad\mbox{(for }4ac-b^2<0\mbox{)}</math>

<math>\int\frac{dx}{(ax^2+bx+c)^n} = \frac{2ax+b}{(n-1)(4ac-b^2)(ax^2+bx+c)^{n-1}}+\frac{(2n-3)2a}{(n-1)(4ac-b^2)}\int\frac{dx}{(ax^2+bx+c)^{n-1}}</math>

<math>\int\frac{x\;dx}{(ax^2+bx+c)^n} = \frac{bx+2c}{(n-1)(4ac-b^2)(ax^2+bx+c)^{n-1}}-\frac{b(2n-3)}{(n-1)(4ac-b^2)}\int\frac{dx}{(ax^2+bx+c)^{n-1}}</math>

<math>\int\frac{dx}{x(ax^2+bx+c)} = \frac{1}{2c}\ln\left|\frac{x^2}{ax^2+bx+c}\right|-\frac{b}{2c}\int\frac{dx}{ax^2+bx+c}</math>



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
French resistance

... Sorbonne University that begun to produce an underground newspaper of the same name. First printing at August 1941 was 15.000. Paper survived through the occupation. Group ...

 
 
 
This page was created in 41.3 ms