Encyclopedia > List of Integrals (arc functions)

  Article Content

List of integrals of arc functions

Redirected from List of Integrals (arc functions)

The following is a list of Integrals (Antiderivative functions) of area functions[?]. For a complete list of Integral functions, please see Table of Integrals and List of integrals.

<math>\int\arcsin\frac{x}{c}\,dx = x\arcsin\frac{x}{c} + \sqrt{c^2-x^2}</math>

<math>\int x \arcsin\frac{x}{c}\,dx = \left(\frac{x^2}{2}-\frac{c^2}{4}\right)\arcsin\frac{x}{c} + \frac{x}{4}\sqrt{c^2-x^2}</math>

<math>\int x^2 \arcsin\frac{x}{c}\,dx = \frac{x^3}{3}\arcsin\frac{x}{c} + \frac{x^2+2c^2}{9}\sqrt{c^2-x^2}</math>

<math>\int\arccos\frac{x}{c}\,dx = x\arccos\frac{x}{c} - \sqrt{c^2-x^2}</math>

<math>\int x \arccos\frac{x}{c}\,dx = \left(\frac{x^2}{2}-\frac{c^2}{4}\right)\arccos\frac{x}{c} - \frac{x}{4}\sqrt{c^2-x^2}</math>

<math>\int x^2 \arccos\frac{x}{c}\,dx = \frac{x^3}{3}\arccos\frac{x}{c} - \frac{x^2+2c^2}{9}\sqrt{c^2-x^2}</math>

<math>\int\arctan\frac{x}{c}\,dx = x\arctan\frac{x}{c} - \frac{c}{2}\ln(c^2+x^2)</math>

<math>\int x \arctan\frac{x}{c}\,dx = \frac{c^2+x^2}{2}\arctan\frac{x}{c} - \frac{cx}{2}</math>

<math>\int x^2 \arctan\frac{x}{c}\,dx = \frac{x^3}{3}\arctan\frac{x}{c} - \frac{cx^2}{6} + \frac{c^3}{6}\ln{c^2+x^2}</math>

<math>\int x^n \arctan\frac{x}{c}\,dx = \frac{x^{n+1}}{n+1}\arctan\frac{x}{c} - \frac{c}{n+1}\int\frac{x^{n+1} dx}{c^2+x^2} \qquad\mbox{(for }n\neq 1\mbox{)}</math>

<math>\int\mathrm{arccot}\,\frac{x}{c}\,dx = x\,\mathrm{arccot}\,\frac{x}{c} + \frac{c}{2}\ln(c^2+x^2)</math>

<math>\int x\,\mathrm{arccot}\,\frac{x}{c}\,dx = \frac{c^2+x^2}{2}\,\mathrm{arccot}\,\frac{x}{c} + \frac{cx}{2}</math>

<math>\int x^2\,\mathrm{arccot}\,\frac{x}{c}\,dx = \frac{x^3}{3}\,\mathrm{arccot}\,\frac{x}{c} + \frac{cx^2}{6} - \frac{c^3}{6}\ln(c^2+x^2)</math>

<math>\int x^n\,\mathrm{arccot}\,\frac{x}{c}\,dx = \frac{x^{n+1}}{n+1}\,\mathrm{arccot}\,\frac{x}{c} + \frac{c}{n+1}\int\frac{x^{n+1} dx}{c^2+x^2} \qquad\mbox{(for }n\neq 1\mbox{)}</math>



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Sanskrit language

... by Sir William Jones, and thus played an important role in the development of linguistics. Indeed, linguistics (along with phonology, etc.) was first developed by ...

 
 
 
This page was created in 27.7 ms