  ## Encyclopedia > Laplace transform

Article Content

# Laplace transform

In mathematics and in particular, functional analysis, the Laplace transform of a function $f(t)$ defined for all real numbers t ≥ 0 is the function $F(s)$, defined by:

$F(s)  = \left\{\mathcal{L} f\right\}(s) =\int_0^\infty e^{-st} f(t)\,dt.$


A sometimes convenient abuse of notation, prevailing especially among engineers and physicists, writes this in the following form:

$F(s)  = \mathcal{L} \left\{f(t)\right\} =\int_0^\infty e^{-st} f(t)\,dt.$


The Laplace transform $F(s)$ typically exists for all real numbers $s > a$, where $a$ is a constant which depends on the growth behavior of $f(t)$.

The Laplace transform is named after its discoverer Pierre-Simon Laplace.

The transform has a number of properties that make it useful for analysing linear dynamic system.

### Linearity

$\mathcal{L}\left\{a f(t) + b g(t) \right\}  = a \mathcal{L}\left\{ f(t) \right\} + b \mathcal{L}\left\{ g(t) \right\}$


### Differentiation

$\mathcal{L}\{f'\}  = s \mathcal{L}(f) - f(0)$

$\mathcal{L}\{f\}  = s^2 \mathcal{L}(f) - s f(0) - f'(0)$

$\mathcal{L}\left\{ f^{(n)} \right\}  = s^n \mathcal{L}\{f\} - s^{n - 1} f(0) - \cdots - f^{(n - 1)}(0)$


$\mathcal{L}\{ t f(t)\}  = -F'(s)$

$\mathcal{L}\left\{ \frac{f(t)}{t} \right\} = \int_s^\infty F(\sigma) d\sigma$

### Integration

$\mathcal{L}\left\{ \int_0^t f(\tau) d\tau \right\}  = {1 \over s} \mathcal{L}\{f\}$


### $s$ shifting

$\mathcal{L}\left\{ e^{at} f(t) \right\}  = F(s - a)$

$\mathcal{L}^{-1} \left\{ F(s - a) \right\}  = e^{at} f(t)$


### $t$ shifting

$\mathcal{L}\left\{ f(t - a) u(t - a) \right\}  = e^{-as} F(s)$

$\mathcal{L}^{-1} \left\{ e^{-as} F(s) \right\}  = f(t - a) u(t - a)$

Note: $u(t)$ is the step function.

### Convolution

$\mathcal{L}\{f * g\}  = \mathcal{L}\{ f \} \mathcal{L}\{ g \}$


### Laplace transform of a function with period $p$

$\mathcal{L}\{ f \}  = {1 \over 1 - e^{-ps}} \int_0^p e^{-st} f(t) dt$


All Wikipedia text is available under the terms of the GNU Free Documentation License

Search Encyclopedia
 Search over one million articles, find something about almost anything!

Featured Article
 Bullying ... with absolute governmental power, from the Greek language turannos. In Classical Antiquity[?] it did not always have inherently negative implications, it merely ...  