= \left\{\mathcal{L} f\right\}(s) =\int_0^\infty e^{-st} f(t)\,dt.</math>
A sometimes convenient abuse of notation, prevailing especially among engineers and physicists, writes this in the following form:
= \mathcal{L} \left\{f(t)\right\} =\int_0^\infty e^{-st} f(t)\,dt.</math>
The Laplace transform <math>F(s)</math> typically exists for all real numbers <math>s > a</math>, where <math>a</math> is a constant which depends on the growth behavior of <math>f(t)</math>.
The Laplace transform is named after its discoverer Pierre-Simon Laplace.
The transform has a number of properties that make it useful for analysing linear dynamic system.
|
= a \mathcal{L}\left\{ f(t) \right\} + b \mathcal{L}\left\{ g(t) \right\}</math>
= s \mathcal{L}(f) - f(0)</math>
= s^2 \mathcal{L}(f) - s f(0) - f'(0)</math>
= s^n \mathcal{L}\{f\} - s^{n - 1} f(0) - \cdots - f^{(n - 1)}(0)</math>
= -F'(s)</math>
= {1 \over s} \mathcal{L}\{f\}</math>
= F(s - a)</math>
= e^{at} f(t)</math>
= e^{-as} F(s)</math>
= f(t - a) u(t - a)</math>Note: <math>u(t)</math> is the step function.
= \mathcal{L}\{ f \} \mathcal{L}\{ g \}</math>
= {1 \over 1 - e^{-ps}} \int_0^p e^{-st} f(t) dt</math>
Search Encyclopedia
|
Featured Article
|