Encyclopedia > Laplace transform

  Article Content

Laplace transform

In mathematics and in particular, functional analysis, the Laplace transform of a function <math>f(t)</math> defined for all real numbers t ≥ 0 is the function <math>F(s)</math>, defined by:

<math>F(s)
  = \left\{\mathcal{L} f\right\}(s)
  =\int_0^\infty e^{-st} f(t)\,dt.</math>

A sometimes convenient abuse of notation, prevailing especially among engineers and physicists, writes this in the following form:

<math>F(s)
  = \mathcal{L} \left\{f(t)\right\}
  =\int_0^\infty e^{-st} f(t)\,dt.</math>

The Laplace transform <math>F(s)</math> typically exists for all real numbers <math>s > a</math>, where <math>a</math> is a constant which depends on the growth behavior of <math>f(t)</math>.

The Laplace transform is named after its discoverer Pierre-Simon Laplace.

The transform has a number of properties that make it useful for analysing linear dynamic system.

Table of contents

Properties

Linearity

<math>\mathcal{L}\left\{a f(t) + b g(t) \right\}
  = a \mathcal{L}\left\{ f(t) \right\} +
    b \mathcal{L}\left\{ g(t) \right\}</math>

Differentiation

<math>\mathcal{L}\{f'\}
  = s \mathcal{L}(f) - f(0)</math>
<math>\mathcal{L}\{f\}
  = s^2 \mathcal{L}(f) - s f(0) - f'(0)</math>
<math>\mathcal{L}\left\{ f^{(n)} \right\}
  = s^n \mathcal{L}\{f\} - s^{n - 1} f(0) - \cdots - f^{(n - 1)}(0)</math>

<math>\mathcal{L}\{ t f(t)\}
  = -F'(s)</math>
<math>\mathcal{L}\left\{ \frac{f(t)}{t} \right\} = \int_s^\infty F(\sigma) d\sigma</math>

Integration

<math>\mathcal{L}\left\{ \int_0^t f(\tau) d\tau \right\}
  = {1 \over s} \mathcal{L}\{f\}</math>

<math>s</math> shifting

<math>\mathcal{L}\left\{ e^{at} f(t) \right\}
  = F(s - a)</math>
<math>\mathcal{L}^{-1} \left\{ F(s - a) \right\}
  = e^{at} f(t)</math>

<math>t</math> shifting

<math>\mathcal{L}\left\{ f(t - a) u(t - a) \right\}
  = e^{-as} F(s)</math>
<math>\mathcal{L}^{-1} \left\{ e^{-as} F(s) \right\}
  = f(t - a) u(t - a)</math>
Note: <math>u(t)</math> is the step function.

Convolution

<math>\mathcal{L}\{f * g\}
  = \mathcal{L}\{ f \} \mathcal{L}\{ g \}</math>

Laplace transform of a function with period <math>p</math>

<math>\mathcal{L}\{ f \}
  = {1 \over 1 - e^{-ps}} \int_0^p e^{-st} f(t) dt</math>

See also



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Battle Creek, Michigan

... someone living alone who is 65 years of age or older. The average household size is 2.43 and the average family size is 3.04. In the city the population is spread ou ...

 
 
 
This page was created in 444.9 ms