Encyclopedia > Laplace operator

  Article Content

Laplace operator

In vector calculus, the Laplace operator or Laplacian is a differential operator[?]. It is equal to the sum of all the second partial derivatives of a dependent variable.

This corresponds to div(grad φ), hence the use of the symbol del to represent it:

<math>\nabla^2 \phi = \nabla \cdot ( \nabla \phi )</math>

It is also written as Δ.

In two dimensional Cartesian coordinates, the Laplacian is:

<math>\nabla^2 = {\partial^2 \over \partial x^2 } +
{\partial^2 \over \partial y^2 } </math>

In three:

<math>\nabla^2 =
{\partial^2 \over \partial x^2 } + {\partial^2 \over \partial y^2 } + {\partial^2 \over \partial z^2 } </math>

It occurs, for example, in Laplace's equation.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Indian reservation

... of the Interior. Because the land is Federal land, it is not subject to state law and therefore on many reservations, there are casinos. Indian Reservations in ...

 
 
 
This page was created in 28 ms