Encyclopedia > Landau's function

  Article Content

Landau's function

Landau's function g(n) is defined for every positive integer n to be the largest order of an element of the symmetric group Sn. Equivalently, g(n) is the largests least common multiple of any partition of n.

For instance, 5 = 2 + 3 and lcm(2,3) = 6. No other partition of 5 yields a bigger lcm, so g(5) = 6. An element of order 6 in the group S5 can be written in cycle notation as (1 2 3) (4 5).

The integer sequence g(1) = 1, g(2) = 2, g(3) = 3, g(4) = 4, g(5) = 6, g(6) = 6, g(7) = 12, g(8) = 15, ... is A000793 (http://www.research.att.com/cgi-bin/access.cgi/as/njas/sequences/eisA.cgi?Anum=A000793).



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
242

... - 3rd century - 4th century Decades: 190s 200s 210s 220s 230s - 240s - 250s 260s 270s 280s 290s Years: 237 238 239 240 241 - 242 - 243 244 245 246 ...

 
 
 
This page was created in 33.7 ms