Encyclopedia > Integral closure

  Article Content

Integral closure

The notion of integral closure is a concept in abstract algebra, a generalization of the set of all algebraic integers.

Let S be an integral domain with R a subring of S. An element s of S is said to be integral over R if s is a root of some monic polynomial with coefficients in R. ("Monic" means that the leading coefficient is 1, the identity element of R).

One can show that the set of all elements of S which are integral over R is a subring of S containing R; it is called the integral closure of R in S. If every element of S is integral over R then R is said to be integrally closed in S. The terminology is justified by the fact that the integral closure of R in S is always integrally closed in S, and is in fact the smallest subring of S that contains R and is integrally closed in S.

In the special case where S is the fraction field of R and R is integrally closed in S, then R is said simply to be integrally closed.

For example, the integers Z are integrally closed; the integral closure of Z in the complex numbers C is the set of all algebraic integers.

See also algebraic closure; this is a special case of integral closure when R and S are fields.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Grateful Dead

... the eastern half of the U.S. On February 14, 2003, reflecting the reality what was, the band renamed itself The Dead[?], keeping 'Grateful' retired out of respect ...

 
 
 
This page was created in 51.8 ms