Encyclopedia > Inner automorphism

  Article Content

Inner automorphism

In abstract algebra, if G is a group and a is an element of G, then the function f : G -> G defined by
f(x) = axa-1     for all x in G
is called an inner automorphism of G. As the name suggests, f is a group automorphism of G.

The collection of all inner automorphisms of G forms a normal subgroup of the full automorphism group G. This group is denoted by Inn(G).

By associating the element a in G with the inner automorphism f in Inn(G) as above, one obtains an isomorphism between the factor group G/Z(G) (where Z(G) is the center of G) and Inn(G). As a consequence, the group of inner automorphisms Inn(G) is trivial (i.e. consists only of the identity element) if and only if G is abelian.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Kings Park, New York

... is 38 years. For every 100 females there are 94.9 males. For every 100 females age 18 and over, there are 92.0 males. The median income for a household in the town is ...

 
 
 
This page was created in 26.1 ms