Encyclopedia > Hypergeometric distribution

  Article Content

Hypergeometric distribution

The hypergeometric distribution is a discrete probability distribution that describes the number of successes in a sequence of n draws from a finite population without replacement.

A typical example is the following: There is a shipment of N objects in which D are defective. The hypergeometric distribution describes the probability that in a sample of n distinctive objects drawn from the shipment exactly k objects are defective.

In general, if a random variable X follows the hypergeometric distribution with parameters N, D and n, then the probability of getting exactly k successes is given by

<math> P(X = k) = {{{D \choose k} {{N-D} \choose {n-k}}}\over {N \choose n}}</math>

The probability is positive, when k is between max(0, D + n - N) and min(n, D).

The formula can be understood as follows: There are <math> N \choose n </math> possible samples (without replacement). There are <math> D \choose k </math> ways to obtain k defective objects and there are <math> {N-D} \choose {n-k} </math> ways to fill out the rest of the sample with non-defective objects.

When the population size is large (i.e. N is large) the hypergeometric distribution can be approximated reasonably well with a binomial distribution with parameters N (number of trials) and p = D / N (probability of success in a single trial).



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Royalist

... it refers to an adherent of a monarch or royal family. Of the more specific uses of the term, the most common include: 1. A supporter of King Charles I of Englan ...

 
 
 
This page was created in 32.7 ms