Encyclopedia > Heaviside step function

  Article Content

Heaviside step function

The Heaviside step function, named in honor of Oliver Heaviside, is a discontinuous function whose value is zero for negative inputs and one elsewhere:

<math>H(x)=\left\{\begin{matrix} 0 : x < 0 \\ 1 : x \ge 0 \end{matrix}\right. </math>

The function is used in the mathematics of signal processing to represent a signal that switches on at a specified time and stays switched on indefinitely.

The Heaviside function is the integral of the Dirac delta function. The value of H(0) is of very little importance, since the function is often used within an integral. Some writers give H(0) = 0, some H(0) = 1. H(0) = 0.5 is often used, since it maximizes the symmetry of the function. This makes the definition:

<math>H(x)=\left\{\begin{matrix} 0 : x < 0 \\ \frac{1}{2} : x = 0 \\ 1 : x > 0 \end{matrix}\right. </math>

The question of the Fourier transform of H is an interesting example for the theory of distributions. It is often stated that it is 1/x, up to a normalizing constant. But near x=0 that cannot be justified: the definition must be given in terms of principal value limit, and the transform isn't to be treated simply as a function. The corresponding convolution operator[?] is the Hilbert transform.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Thomas a Kempis

... references to medieval mistakes or superstitions are confined to several passages, viz., the merit of good works and transubstantiation (iv. 2), purgatory (iv. 9), and ...

 
 
 
This page was created in 26.7 ms