Encyclopedia > Generalized permutation matrix

  Article Content

Generalized permutation matrix

In matrix theory, a generalized permutation matrix is a matrix with the same nonzero pattern as a permutation matrix, i.e. there is exactly one nonzero entry in each row and each column.

An example of generalized permutation matrix is

<math>\begin{bmatrix}0 & 0 & 3 & 0\\ 0 & -2 & 0 & 0\\
1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}</math>



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Thomas a Kempis

... presented as the highest study possible to a mortal. His teachings far excel all the teachings of the saints. The book gives counsels to read the Scriptures, ...

 
 
 
This page was created in 26 ms