Encyclopedia > Generalized permutation matrix

  Article Content

Generalized permutation matrix

In matrix theory, a generalized permutation matrix is a matrix with the same nonzero pattern as a permutation matrix, i.e. there is exactly one nonzero entry in each row and each column.

An example of generalized permutation matrix is

<math>\begin{bmatrix}0 & 0 & 3 & 0\\ 0 & -2 & 0 & 0\\
1 & 0 & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}</math>



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Great River, New York

... 509 households, and 417 families residing in the town. The population density is 129.8/km² (336.2/mi²). There are 519 housing units at an average density of ...

 
 
 
This page was created in 29.7 ms