Encyclopedia > Gauss-Markov process

  Article Content

Gauss-Markov process

This article is not about the Gauss-Markov theorem of mathematical statistics.


As one would expect, Gauss-Markov stochastic processes are stochastic processes that satisfy the requirements for both Gaussian processes[?] and Markov processes.

Every Gauss-Markov process X(t) possesses the three following properties:

  • If h(t) is a non-zero scalar function of t, then Z(t) = h(t)X(t) is also a Gauss-Markov process
  • If f(t) is a non-decreasing scalar function of t, then Z(t) = X(f(t)) is also a Gauss-Markov process
  • There exists a non-zero scalar function h(t) and a non-decreasing scalar function f(t) such that X(t) = h(t)W(f(t)), where W(t) is the Standard Wiener Process.

Property (3) means that every Gauss-Markov process can be synthesized from the Standard Wiener Process (SWP).



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
North Haven, New York

... 30.9% of all households are made up of individuals and 18.1% have someone living alone who is 65 years of age or older. The average household size is 2.20 and th ...

 
 
 
This page was created in 34.2 ms