Encyclopedia > Gauss-Bonnet theorem

  Article Content

Gauss-Bonnet theorem

The Gauss-Bonnet theorem in differential geometry is an important statement about surfaces which connects their geometry (in the sense of curvature) to their topology (in the sense of the Euler characteristic).

Suppose M is a compact two-dimensional orientable Riemannian manifold with boundary ∂M. Denote by K the Gaussian curvature[?] at points of M, and by kg the geodesic curvature[?] at points of ∂M. Then

M K dA + ∫M kg ds = 2π χ(M)
where χ(M) is the Euler characteristic of M.

The theorem applies in particular if the manifold does not have a boundary, in which case the integral ∫M kg ds can be omitted.

If one bends and deforms the manifold M, its Euler characteristic will not change, while the curvatures at given points will. The theorem requires, somewhat surprisingly, that the total integral of all curvatures will remain the same.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
North Lindenhurst, New York

... and over, there are 91.6 males. The median income for a household in the town is $59,022, and the median income for a family is $63,642. Males have a median income of ...

 
 
 
This page was created in 35.3 ms