Encyclopedia > Exterior derivative

  Article Content

Exterior derivative

Exterior derivative extends the concept of the differential[?] of a function to differential forms of higher degree. Exterior derivative of a differential form of degree k is a differential form of degree k+1. Exterior differentiation satisfies three important properties:

  • linearity

<math>d(\omega\wedge\eta) = d\omega\wedge\eta+(-1)^{{\rm deg\,}\omega}(\omega\wedge d\eta)</math>

  • and a formula encoding the equality of mixed partial derivatives <math>d(d\omega)=0</math>.

It can be shown that exterior derivative is uniquely determined by these properties and its agreement with the differential on 0-forms (functions).

Special cases of exterior differentiation correspond to familiar differential operators of vector calculus along the same lines as the differential corresponds to the gradient. For example, in 3 dimensional Euclidean space, exterior derivative of a 1-form corresponds to curl and exterior derivative of a 2-form corresponds to divergence.

This correspondence reveals about a dozen formulas from vector calculus as merely special cases of the above three rules of exterior differentiation. The kernel of d consists of the closed forms, and the image of the exact forms (cf. exact differentials).



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Flapper

... "flapper" refers to a young woman from the 1920s who dresses unconventionally and flaunts her disdain for "decent" behavior. The flapper represented a new breed of woman, ...

 
 
 
This page was created in 23 ms