Encyclopedia > Euler-Mascheroni gamma constant

  Article Content

Euler-Mascheroni constant

Redirected from Euler-Mascheroni gamma constant

The Euler-Mascheroni constant is a mathematical constant, used mainly in number theory, and is defined as the limiting difference between the harmonic series and the natural logarithm:

<math>\gamma = \lim_{n \rightarrow \infty } \left(
\sum_{k=1}^n \frac{1}{k} - \ln(n) \right)</math>

Intriguingly, the constant is also given by the integral:

<math>\gamma = - \int_0^\infty { \ln(x) \over e^x } dx </math>

where ln(x) is the natural logarithm of x.

Its value is approximately

γ ≈ 0.57721566...

It is not known whether γ is a rational number or not. However, continued fraction analysis shows that if γ is rational, it has a large denominator.

The Euler-Mascheroni constant appears in



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Northampton, Suffolk County, New York

... 18 to 24, 30.3% from 25 to 44, 20.9% from 45 to 64, and 9.8% who are 65 years of age or older. The median age is 34 years. For every 100 females there are 91.0 males. ...

 
 
 
This page was created in 315.8 ms