Encyclopedia > Elliptic integral

  Article Content

Elliptic integral

An elliptic integral is any function f which can be expressed in the form

<math> f(x) = \int_{c}^{x} R(t,P(t))\ dt </math>

where R is a rational function of its two arguments, P is the square root of a polynomial of degree 3 or 4 with no repeated roots, and c is a constant.

Particular examples include:

  • The complete elliptic integral of the first kind K is defined as
<math> K(x) = \int_{0}^{1} \frac{1}{ \sqrt{(1-t^2)(1-x^2 t^2)} }\ dt </math>
and can be computed in terms of the arithmetic-geometric mean.

  • The complete elliptic integral of the second kind E is defined as
<math> E(x) = \int_{0}^{1} \frac{ \sqrt{1-x^2 t^2} }{ \sqrt{1-t^2} }\ dt </math>



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Autocracy

... - Wikipedia <<Up     Contents Autocracy Autocracy is a form of government which resides in the absolute power of a single individual. The ...

 
 
 
This page was created in 26.3 ms