Encyclopedia > Elementary matrix transformations

  Article Content

Elementary matrix transformations

Elementary matrix transformations or Elementary row and column transformations are linear transformations which are normally used in gauss elimination to solve a set of linear equations.

We distinguish three types of elementary transformations and their corresponding matrices:

  1. Row switching transformations,
  2. Row multiplying transformations,
  3. Linear combinator transformations.

Table of contents

1. Row switching transformations

This transformation, Tij, switches all matrix elements on row i with their counterparts on row j. The matrix resulting in this transformation is:
<math>
T_{i,j} = \begin{bmatrix} 1 & & & & & & & \\ & \ddots & & & & & & \\ & & 0 & & 1 & & \\ & & & \ddots & & & & \\ & & 1 & & 0 & & \\ & & & & & & \ddots & \\ & & & & & & & 1\end{bmatrix},\quad </math>

Properties

  • The inverse of this matrix is itself: Tij-1=Tij.
  • When applied to a matrix A: det[TA]=-det[A].
  • The matrix and it's inverse are lower triangular matrices.

2. Row multiplying transformations

This transformation, Ti(m), multiplies all elements on row i with m. The matrix resulting in this transformation is:
<math>
T_i(m) = \begin{bmatrix} 1 & & & & & & & \\ & \ddots & & & & & & \\ & & 1 & & & & & \\ & & & m & & & & \\ & & & & & 1 & & \\ & & & & & & \ddots & \\ & & & & & & & 1\end{bmatrix},\quad </math>

Properties

  • The inverse of this matrix is: Ti(m)-1=Ti(1/m).
  • When applied to a matrix A: det[TA]=mdet[A].
  • The matrix and it's inverse are lower triangular matrices.

3. Linear combinator transformations

This transformation, Tij(m), substracts row i multiplied by m from row j. The matrix resulting in this transformation is:
<math>
T_{i,j}(m) = \begin{bmatrix} 1 & & & & & & & \\ & \ddots & & & & & & \\ & & 1 & & & & & \\ & & & \ddots & & & & \\ & & -m & & 1 & & \\ & & & & & & \ddots & \\ & & & & & & & 1\end{bmatrix} </math>

Properties

  • The inverse of this matrix is: Tij(m)-1=Tij(-m).
  • When applied to a matrix A: det[TA]=det[A].
  • The matrix and it's inverse are lower triangular matrices.

See also



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Quadratic formula

... to both sides, getting <math>x^2+\frac{b}{a}x+\frac{b^2}{4a^2}=-\frac{c}{a}+\frac{b^2}{4a^2}.</math> The left side is now a perfect square; it is the ...

 
 
 
This page was created in 26.7 ms