Redirected from Double Precision
Sign bit[?]: 1 Exponent width: 11 Significand[?] precision: 53
The format is written with an implicit integer bit[?] with value 1 unless the written exponent is all zeros. Thus only 52 bits of the fraction appear in the memory format.
syyy yyyy yyyy xxxx xxxx … xxxx (52 xs)
E_{min} (0x001) = 1022 E_{max} (0x7fe) = 1023 Exponent bias[?] (0x7fe) = 1023The true exponent = written exponent  exponent bias
0x000 and 0x7ff are reserved exponents 0x000 is used to represent zero and denormals 0x7ff is used to represent infinity and NaNs
All bit patterns are valid encodings.
3ff0 0000 0000 0000 = 1
c000 0000 0000 0000 = 2
7fef ffff ffff ffff ~ 1.7976931348623 x 10308 (Max Double)
3fd5 5555 5555 5555 ~ 1/3(1/3 rounds down instead of up like single precision, because of the odd number of bits in the significand.)
0000 0000 0000 0000 = 0 8000 0000 0000 0000 = 0
7ff0 0000 0000 0000 = Infinity fff0 0000 0000 0000 = Infinity
Search Encyclopedia
