Encyclopedia > Discriminant of a polynomial

  Article Content

Discriminant of a polynomial

The discriminant of a polynomial is a number which can be easily computed from the coefficients of the polynomial and which is zero if and only if the polynomial has a multiple root. The polynomial x2 + bx + c for instance has the discriminant b2 - 4c.

For the general definition, suppose

p(x) = xn + an-1xn-1 + ... + a1x + a0
is a polynomial with real coefficients. The discriminant of this polynomial is defined as the determinant of the (2n-1) × (2n-1) matrix

  1     an-1     an-2      .         .        .    a0       0        .   .   .   0
  0     1        an-1     an-2       .        .    .       a0        0   .   .   0
  0     0        1        an-1     an-2       .    .       .        a0   0   .   0
  .     .        .        .         .        .    .
  .     .        .        .         .        .    .
  0     0        0        0         0        1    an-1    an-2       .   .   .  a0
  n  (n-1)an-1 (n-2)an-2   .         .       1a1   0        0        .   .   .   0
  0     n      (n-1)an-1 (n-2)an-2   .        .   1a1       0        0   .   .   0
  0     0        n       (n-1)an-1 (n-2)an-2  .    .       1a1       0   0   .   0
  .     .        .        .         .        .    .
  .     .        .        .         .        .    .
  0     0        0        0         0        n  (n-1)an-1  an-2      .   .  1a1  0
  0     0        0        0         0        0    n      (n-1)an-1  an-2 .   .  1a1

In the case n=4, this matrix looks like this:

   1    a3   a2   a1   a0   0    0
   0    1    a3   a2   a1   a0   0 
   0    0    1    a3   a2   a1   a0
   4    3a3  2a2  1a1   0   0    0
   0    4    3a3  2a2  1a1  0    0   
   0    0    4    3a3  2a2  1a1  0
   0    0    0    4    3a3  2a2  1a1

The discriminant of p(x) is thus equal to the resultant[?] of p(x) and p'(x).

One can show that, up to sign, the discriminant is equal to

Πi<j (ri - rj)2
where r1, ..., rn are the (complex) numbers such that
p(x) = (x - r1) (x - r2) ... (x - rn)
Therefore, p has a multiple root if and only if the discriminant is zero. Note however that this multiple root can be complex.

In order to compute discriminants, one does not evaluate the above determinant each time for different coefficient, but instead one evaluates it only once for general coefficients to get an easy-to-use formula. For instance, the discriminant of a polynomial of third degree is a12a22 - 4a0a23 -4a13 + 18 a0a1a2 - 27a02.

The discriminant can be defined for polynomials over arbitrary fields, in exactly the same fashion as above. The product formula involving the roots ri remains valid; the roots have to be taken in some splitting field of the polynomial.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
242

... 220s 230s - 240s - 250s 260s 270s 280s 290s Years: 237 238 239 240 241 - 242 - 243 244 245 246 247 Events Patriarch Titus[?] succeeds Patriarch Eugenius I[?] as ...

 
 
 
This page was created in 33 ms