Encyclopedia > Direct sum (Matrix)

  Article Content

Matrix addition

Redirected from Direct sum (Matrix)

The usual matrix addition is defined for two matrices of same dimensions. The sum of two m-by-n matrices A and B, denoted by A + B, is again an m-by-n matrix computed by adding corresponding elements, i.e., (A + B)[i, j] = A[i, j] + B[i, j]. For example

<math>
  \begin{bmatrix}
    1 & 3 \\
    1 & 0 \\
    1 & 2
  \end{bmatrix}
+
  \begin{bmatrix}
    0 & 0 \\
    7 & 5 \\
    2 & 1
  \end{bmatrix}

\begin{bmatrix} 1+0 & 3+0 \\ 1+7 & 0+5 \\ 1+2 & 2+1 \end{bmatrix}

  \begin{bmatrix}
    1 & 3 \\
    8 & 5 \\
    3 & 3
  \end{bmatrix}
</math>

The m × n matrices with matrix addition as operation form an abelian group.

For any arbitrary matrices A (of size m × n) and B (of size p × q) , we have the direct sum of A and B, denoted by AB and defined as

 
<math>
  A \oplus B =
  \begin{bmatrix}
     a_{11} & \cdots & a_{1n} &      0 & \cdots &      0 \\
     \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\
    a_{m 1} & \cdots & a_{mn} &      0 & \cdots &      0 \\
          0 & \cdots &      0 & b_{11} & \cdots &  b_{1q} \\
     \vdots & \cdots & \vdots & \vdots & \cdots & \vdots \\
          0 & \cdots &      0 & b_{p1} & \cdots &  b_{pq} 
  \end{bmatrix}
</math>

For instance,

<math>
  \begin{bmatrix}
    1 & 3 & 2 \\
    2 & 3 & 1
  \end{bmatrix}
\oplus
  \begin{bmatrix}
    1 & 6 \\
    0 & 1
  \end{bmatrix}
=
  \begin{bmatrix}
    1 & 3 & 2 & 0 & 0 \\
    2 & 3 & 1 & 0 & 0 \\
    0 & 0 & 0 & 1 & 6 \\
    0 & 0 & 0 & 0 & 1
  \end{bmatrix}
</math>



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
1904

... January 7 - The distress signal[?] "CQD" is established only to be replaced two years later by "SOS." February 7 - A fire in Baltimore, Maryland destroys over 1,500 ...

 
 
 
This page was created in 45.4 ms