Encyclopedia > Diophantine equation

  Article Content

Diophantine equation

Diophantine equations are equations of the form f = 0, where f is a polynomial with integer coefficients in one or several variables which take on integral values. They are named after Diophantus who studied equations with variables which take on rational values. Examples of Diophantine equations are


The depth of the study of general Diophantine equations is shown by the characterisation of Diophantine sets as recursively enumerable.

The field of Diophantine approximation deals with the cases of Diophantine inequalities: variables are still supposed to be integral, but some coefficients may be irrational numbers, and the equality sign is replaced by upper and lower bounds.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
242

... - 4th century Decades: 190s 200s 210s 220s 230s - 240s - 250s 260s 270s 280s 290s Years: 237 238 239 240 241 - 242 - 243 244 245 246 247 Events Patriarch ...

 
 
 
This page was created in 20.3 ms