Encyclopedia > Devil's staircase

  Article Content

Devil's staircase

A devil's staircase is a function f(x) defined on the interval [a,b] with the following properties:
  • f(x) is continuous on [a,b].
  • there exists a set N of measure 0 such that for all x outside of N the derivative f'(x) exists and is zero.
  • f(x) is nondecreasing on [a,b].
  • f(a) < f(b).
One staircase on [0,1] can be constructed as follows.
  1. Express x in base 3.
  2. Replace the first 1 with a 2 and everything after it with 0.
  3. Replace all 2s with 1s.
  4. Interpret the result as a binary number. The result is f(x).

This staircase is a cumulative distribution function; the random variable it describes is uniformly distributed on the Cantor set.

There are other functions that have been called "devil's staircase". One is defined in terms of the circle map[?].



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
1904

... Fifi D'Orsay, actress (+ 1983) April 22 - Robert Oppenheimer, physicist (+ 1967) May 6 - Harry Martinson, swedish author, winner of the Nobel Prize in literature May ...

 
 
 
This page was created in 45.3 ms