Encyclopedia > Descending chain condition

  Article Content

Ascending chain condition

Redirected from Descending chain condition

In mathematics, a poset P is said to satisfy the ascending chain condition (ACC) if every ascending chain a1 ≤ a2 ≤ ... of elements of P is eventually stationary, that is, there is some positive integer n such that am = an for all m > n. Similarly, P is said to satisfy the descending chain condition (DCC) if every descending chain a1 ≥ a2 ≥ ... of elements of P is eventually stationary (that is, there is no infinite descending chain).

The ascending chain condition on P is equivalent to the maximum condition: every nonempty subset of P has a maximal element. Similarly, the descending chain condition is equivalent to the minimum condition: every nonempty subset of P has a minimal element.

Every finite poset satisfies both ACC and DCC.

A totally ordered set that satisfies the descending chain condition is called a well-ordered set

See also Noetherian and Artinian.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
BBC News 24

... BBC News 24 channel, with so few viewers. Their response was to promote the channel through their ordinary channels BBC1 and BBC2, using terrestrial signals, and this i ...

 
 
 
This page was created in 65.7 ms