Copeland's method is a pairwise voting system in which the winner is determined by finding the candidate with the most pairwise victories. It's a varient of
Condorcet's method, and shares many characteristics with that method.
Proponents argue that this method is more understandable to the general populace, which is generally familiar with the sporting equivalent. In many team sports, the teams with the greatest number of victories in regular season matchups make it to the playoffs.
Critics argue that this method leads to ties in cases where the outcome is different than in Condorcet's method (i.e. when there are multiple members of the Smith set). They argue that it also puts too much emphasis on the quantity of pairwise victories rather than the magnitude of those victories (or conversely, of the defeats).
External references:
- E Stensholt, "Nonmonotonicity in AV (http://www.electoral-reform.org.uk/publications/votingmatters/P2.HTM)"; Electoral Reform Society Voting matters - Issue 15, June 2002 (online).
- A.H. Copeland, A 'reasonable' social welfare function, Seminar on Mathematics in Social Sciences, University of Michigan, 1951.
- V.R. Merlin, and D.G. Saari, "Copeland Method. II. Manipulation, Monotonicity, and Paradoxes"; Journal of Economic Theory; Vol. 72, No. 1; January, 1997; 148-172.
- D.G. Saari. and V.R. Merlin, 'The Copeland Method. I. Relationships and the Dictionary'; Economic Theory; Vol. 8, No. l; June, 1996; 51-76.
All Wikipedia text
is available under the
terms of the GNU Free Documentation License