Encyclopedia > Conditional proof

  Article Content

Conditional proof

Conditional proof takes the form of asserting a conditional, and proving that the premise or antecedent of the conditional necessarily leads to the conclusion. Proving this requires assuming the premise and deriving, from that assumption, the consequent of the conditional. By proving the connection between the antecedent and the consequent, the assumption of the antecedent is justified post hoc.

For example, I claim that "if you don't leave now, you'll be late for work". I prove it with the following argument:

  1. It takes twenty minutes to get to work.
  2. You're supposed to start work in twenty minutes.
  3. Assume you don't leave now.
  4. When you do leave, you'll arrive after the time you're supposed to start.
∴ If you don't leave now, you'll be late for work.

Note that I haven't proved that you'll be late for work: I've only proven the conditional, that the consequent follows necessarily from the antecedent.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
242

...     Contents 242 Centuries: 2nd century - 3rd century - 4th century Decades: 190s 200s 210s 220s 230s - 240s - 250s 260s 270s 280s 290s Years: 237 ...

 
 
 
This page was created in 31.6 ms