Encyclopedia > Cofinality

  Article Content

Cofinality

Let A be a partially ordered set. A subset B of A is said to be cofinal if for every a in A there is a b in B such that ab. The cofinality of A is the smallest cardinality of a cofinal subset. Note that the cofinality always exists, since the cardinal numbers are well ordered. Cofinality is only an interesting concept if there is no maximal element in A; otherwise the cofinality is 1.

If A admits a totally ordered cofinal subset B, then we can find a subset of B which is well-ordered and cofinal in B (and hence in A). Moreover, any cofinal subset of B whose cardinality is equal to the cofinality of B is well-ordered and order-isomorphic[?] to its own cardinality.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
242

... 2nd century - 3rd century - 4th century Decades: 190s 200s 210s 220s 230s - 240s - 250s 260s 270s 280s 290s Years: 237 238 239 240 241 - 242 - 243 244 ...

 
 
 
This page was created in 26.2 ms