Encyclopedia > Catalan's conjecture

  Article Content

Catalan's conjecture

Catalan's conjecture is a simple conjecture in number theory that was proposed by the mathematician Eugène Charles Catalan[?].

To understand the conjecture notice that 23 = 8 and 32 = 9 are two consecutive powers of natural numbers. Catalan's conjecture states that this is the only case of two consecutive powers.

That is to say, Catalan's conjecture states that the only solution in the natural numbers of

xa − yb = 1
for x,a,y,b > 1 is x = 3, a = 2, y = 2, b = 3.

In particular, notice that it's unimportant that the same numbers 2 and 3 are repeated in the equation 32 − 23 = 1. Even a case where the numbers were not repeated would still be a counterexample to Catalan's conjecture.

A proof of Catalan's conjecture, which would make it a theorem, was claimed by the mathematician Preda Mihailescu[?] in April 2002. The proof is still being checked.

External links:



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Canadian Music Hall of Fame

... Young 1983 Glenn Gould 1986 Gordon Lightfoot 1987 The Guess Who[?] 1989 The Band 1990 Maureen Forrester[?] 1991 Leonard Cohen 1992 Ian and Sylvia[?] 1993 ...

 
 
 
This page was created in 22.4 ms