Encyclopedia > Borwein's algorithm

  Article Content

Borwein's algorithm

Borwein's algorithm is an algorithm devised by Jonathan[?] and Peter Borwein[?] to calculate the value of 1/π.

It works as follows:

  • Start out by setting

    <math>a_0 = 6 - 4\sqrt{2}</math>

    <math>y_0 = \sqrt{2} - 1</math>

  • Then iterate

    <math>y_{k+1} = \frac{1-(1-y_k^4)^{1/4}}{1+(1-y_k^4)^{1/4}}</math>

    <math>a_{k+1} = a_k(1+y_{k+1})^4 - 2^{2k+3} y_{k+1} (1 + y_{k+1} + y_{k+1}^2)</math>

Then ak converges quartically against 1/π; that is, each iteration approximately quadruples the number of correct digits.

See also



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Anna Karenina

... him in this plan, but, later that evening, Kitty rejects him in the expectation that Vronsky is about to propose to her. The following morning Stiva and Vronsky are ...

 
 
 
This page was created in 23.2 ms