Encyclopedia > Boosting

  Article Content

Boosting

Boosting is a machine learning technique for perform supervised learning. Boosting occurs in stages, by incrementally adding to the current learned function. At every stage, a weak learner (i.e., one that can have an accuracy as bad as slightly greater than chance) is trained with the data. The output of the weak learner is then added to the learned function, with some strength (proportional to how accurate the weak learner is). Then, the data is reweighted: examples that the current learned function get wrong are "boosted" in importance, so that future weak learners will attempt to fix the errors.

There are several different boosting algorithms, depending on the exact mathematical form of the strength and weight. One of the most common boosting algorithms is AdaBoost[?]. Most boosting algorithms fit into the AnyBoost[?] framework, which shows that boosting performs gradient descent in function space[?].

Boosting is based on probably approximately correct learning[?], which is a branch of learning theory.

Algorithmically, boosting is related to

External Links



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Wheatley Heights, New York

... 13.0% of all households are made up of individuals and 5.2% have someone living alone who is 65 years of age or older. The average household size is 3.42 and the average ...

 
 
 
This page was created in 30.1 ms