Encyclopedia > Bolyai-Gerwien theorem

  Article Content

Bolyai-Gerwien theorem

In geometry, the Bolyai-Gerwien theorem states that if two simple polygons of equal area are given, one can cut the first into finitely many polygonal pieces and rearrange the pieces to obtain the second polygon.

"Rearrangement" means that one may apply a translation[?] and a rotation to every polygonal piece.

Unlike the solution to Tarski's circle squaring problem, the axiom of choice is not required for the proof, and the decomposition and reassembly can actually be carried out "physically".

Higher dimensions

The analogous statement about polyhedra in three dimensions, known as Hilbert's third problem, is false. This was proven by Max Dehn in 1900. The answer is unknown for dimensions higher than 3.

History

Wolfgang Bolyai first formulated the question. Gerwien proved the theorem in 1833, but in fact William Wallace had proven the same result already in 1807.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Holtsville, New York

... and the median income for a family is $71,784. Males have a median income of $50,361 versus $31,709 for females. The per capita income for the town is $24,031. 3.6% of ...

 
 
 
This page was created in 220.7 ms