Encyclopedia > Bifurcation diagram

  Article Content

Bifurcation diagram

A bifurcation diagram shows the possible values a function can have in function of a parameter of that function.

An example is the bifurcation diagram of the logistic map. In this case, the parameter r is show on the x-axis of the plot and the y-axis shows the possible population values of the logistic function.

The bifurcation diagram nicely shows the forking of the possible periods of stable orbits from 1 to 2 to 4 to 8 etc. The ratio of the values of r where bifurcation occurs is called the Feigenbaum constant.

Period 3 occurs at 3.83, 5 at 3.74, and so on. Here are the values of c (Mandelbrot set) and r (logistic map) for which 0 and 0.5, respectively, are in stable cycles of the given period:

ncr
3 -1.75487766624669 3.83187405528332
5 -1.6254137251233 3.73891491297069
7 -1.5748891397523 3.70176915353796
9 -1.55528270076858 3.68721618093415
11 -1.54790376180395 3.68171867413713
13 -1.54520178169266 3.67970280568025
15 -1.54422856011953 3.6789763419034
17 -1.54388090052771 3.67871678273588
19 -1.54375717344627 3.67862440326842
21 -1.54371321190794 3.67859157910118
23 -1.54369760241228 3.67857992407341
25 -1.54369206143762 3.67857578682226
27 -1.54369009474707 3.67857431836197
29 -1.54368939672815 3.67857379717502
31 -1.54368914899106 3.67857361219815
33 -1.54368906106612 3.67857354654758
35 -1.54368902986056 3.67857352324744
37 -1.54368901878536 3.67857351497797
39 -1.54368901485465 3.67857351204304
41 -1.5436890134596 3.6785735110014
43 -1.54368901296448 3.67857351063172
45 -1.54368901278875 3.67857351050051
47 -1.54368901272639 3.67857351045394
49 -1.54368901270425 3.67857351043742
51 -1.5436890126964 3.67857351043155
53 -1.54368901269361 3.67857351042947
55 -1.54368901269262 3.67857351042873
57 -1.54368901269227 3.67857351042847
59 -1.54368901269215 3.67857351042837
61 -1.5436890126921 3.67857351042834
63 -1.54368901269208 3.67857351042833
65 -1.54368901269208 3.67857351042832
67 -1.54368901269208 3.67857351042832
69 -1.54368901269208 3.67857351042832
71 -1.54368901269208 3.67857351042832
.............................
6 -1.47601464272843 3.62755752951552
10 -1.44700884060748 3.60538583753537
14 -1.43641156477138 3.59723819837256
18 -1.43249708877703 3.59422210982563
22 -1.43109654904286 3.59314214731307
26 -1.4306095831777 3.5927665403408
30 -1.43044302383688 3.59263805714325
34 -1.43038649845399 3.59259445224585
38 -1.4303673801139 3.5925797037807
42 -1.43036092273569 3.59257472234509
46 -1.43035874289521 3.59257304074174
50 -1.43035800719415 3.59257247319657
54 -1.43035775891334 3.59257228166417
58 -1.43035767512727 3.59257221702869
62 -1.43035764685272 3.59257219521673
66 -1.4303576373112 3.59257218785607
70 -1.43035763409132 3.59257218537214
74 -1.43035763300474 3.59257218453392
78 -1.43035763263807 3.59257218425105
82 -1.43035763251433 3.5925721841556
86 -1.43035763247258 3.59257218412339
90 -1.43035763245848 3.59257218411252
94 -1.43035763245373 3.59257218410885
98 -1.43035763245212 3.59257218410761
102 -1.43035763245158 3.59257218410719
106 -1.4303576324514 3.59257218410705
110 -1.43035763245134 3.592572184107
114 -1.43035763245132 3.59257218410699
118 -1.43035763245131 3.59257218410698
122 -1.43035763245131 3.59257218410698
126 -1.43035763245131 3.59257218410698
130 -1.43035763245131 3.59257218410698
.............................
12 -1.41697773125021 3.58222983582036
20 -1.41094075752239 3.57754981136923
28 -1.40870040682787 3.57581086792324
36 -1.40786584608059 3.57516278792669
44 -1.40756521961828 3.5749292958202
52 -1.40746003476332 3.57484759530604
60 -1.40742384014022 3.57481948115997
68 -1.40741148396746 3.57480988344185
76 -1.40740728031309 3.57480661822444
84 -1.40740585222534 3.57480550894652
92 -1.40740536734078 3.57480513230868
100 -1.4074052027419 3.57480500445521
108 -1.40740514687184 3.5748049610577
116 -1.40740512790837 3.57480494632768
124 -1.40740512147185 3.57480494132806
132 -1.4074051192872 3.57480493963112
140 -1.40740511854569 3.57480493905515
148 -1.40740511829402 3.57480493885965
156 -1.40740511820859 3.5748049387933
164 -1.4074051181796 3.57480493877078
172 -1.40740511816976 3.57480493876314
180 -1.40740511816642 3.57480493876054
188 -1.40740511816528 3.57480493875966
196 -1.4074051181649 3.57480493875936
204 -1.40740511816477 3.57480493875926
212 -1.40740511816472 3.57480493875923
220 -1.40740511816471 3.57480493875921
228 -1.4074051181647 3.57480493875921
236 -1.4074051181647 3.57480493875921
244 -1.4074051181647 3.57480493875921
.............................
4096 -1.40115517044441 3.56994565735885
2048 -1.40115510202246 3.56994560411108
1024 -1.40115478254662 3.56994535548647
512 -1.40115329084992 3.56994419460807
256 -1.40114632582695 3.56993877423331
128 -1.40111380493978 3.56991346542235
64 -1.40096196294484 3.56979529374994
32 -1.40025308121478 3.56924353163711
16 -1.39694535970456 3.56666737985627
8 -1.38154748443206 3.55464086276882
4 -1.31070264133683 3.4985616993277
2 -1. 3.23606797749979
1 0. 2.



All Wikipedia text is available under the terms of the GNU Free Documentation License

 
  Search Encyclopedia

Search over one million articles, find something about almost anything!
 
 
  
  Featured Article
Manifold

... "locally look like" Euclidean space Rn and are therefore inherently finite-dimensional objects. To allow for infinite dimensions, one may consider Banach manifolds ...